def test_cost_layer(self): cost1 = layer.classification_cost(input=inference, label=label) cost2 = layer.classification_cost(input=inference, label=label, weight=weight) cost3 = layer.cross_entropy_cost(input=inference, label=label) cost4 = layer.cross_entropy_with_selfnorm_cost(input=inference, label=label) cost5 = layer.mse_cost(input=inference, label=label) cost6 = layer.mse_cost(input=inference, label=label, weight=weight) cost7 = layer.multi_binary_label_cross_entropy_cost(input=inference, label=label) cost8 = layer.rank_cost(left=score, right=score, label=score) cost9 = layer.lambda_cost(input=inference, score=score) cost10 = layer.sum_cost(input=inference) cost11 = layer.huber_cost(input=score, label=label) print layer.parse_network(cost1, cost2) print layer.parse_network(cost3, cost4) print layer.parse_network(cost5, cost6) print layer.parse_network(cost7, cost8, cost9, cost10, cost11) crf = layer.crf(input=inference, label=label) crf_decoding = layer.crf_decoding(input=inference, size=3) ctc = layer.ctc(input=inference, label=label) warp_ctc = layer.warp_ctc(input=pixel, label=label) nce = layer.nce(input=inference, label=label, num_classes=3) hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3) print layer.parse_network(crf, crf_decoding, ctc, warp_ctc, nce, hsigmoid)
def test_cost_layer(self): cost1 = layer.classification_cost(input=inference, label=label) cost2 = layer.classification_cost( input=inference, label=label, weight=weight) cost3 = layer.cross_entropy_cost(input=inference, label=label) cost4 = layer.cross_entropy_with_selfnorm_cost( input=inference, label=label) cost5 = layer.square_error_cost(input=inference, label=label) cost6 = layer.square_error_cost( input=inference, label=label, weight=weight) cost7 = layer.multi_binary_label_cross_entropy_cost( input=inference, label=label) cost8 = layer.rank_cost(left=score, right=score, label=score) cost9 = layer.lambda_cost(input=inference, score=score) cost10 = layer.sum_cost(input=inference) cost11 = layer.huber_regression_cost(input=score, label=label) cost12 = layer.huber_classification_cost(input=score, label=label) print layer.parse_network([cost1, cost2]) print layer.parse_network([cost3, cost4]) print layer.parse_network([cost5, cost6]) print layer.parse_network([cost7, cost8, cost9, cost10, cost11, cost12]) crf = layer.crf(input=inference, label=label) crf_decoding = layer.crf_decoding(input=inference, size=3) ctc = layer.ctc(input=inference, label=label) warp_ctc = layer.warp_ctc(input=pixel, label=label) nce = layer.nce(input=inference, label=label, num_classes=3) hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3) print layer.parse_network( [crf, crf_decoding, ctc, warp_ctc, nce, hsigmoid])