Beispiel #1
0
 def test_check_output(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         outs = self.calc_output(place)
         outs = [np.array(out) for out in outs]
         outs.sort(key=len)
         self.verify_output(outs)
 def test_check_grad_normal(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(
             place, ['X', 'Y'],
             'Out',
             max_relative_error=self.max_relative_error)
Beispiel #3
0
 def test_checkout_grad(self):
     if paddle.is_compiled_with_xpu():
         paddle.enable_static()
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ['X'],
                                    'Out',
                                    max_relative_error=1.e1)
 def test_check_grad_ingore_y(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ['X'],
                                    'Out',
                                    max_relative_error=0.006,
                                    no_grad_set=set('Y'))
 def test_check_grad_normal(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(
             place, ['X', 'Y'],
             'Out',
             check_dygraph=(self.use_mkldnn == False))
Beispiel #6
0
def is_xpu_available():
    """ check whether morl can access a XPU

    Returns:
      True if paddle was complied with XPU.
    """
    xpu_count = int(os.getenv("FLAGS_selected_xpus", "-1"))
    if xpu_count < 0:
        return False

    if _HAS_FLUID:
        from paddle import fluid
        if not fluid.is_compiled_with_xpu():
            logger.warning("Found non-empty XPU_VISIBLE_DEVICES. \
                But morl found that Paddle was not complied with XPU, which may cause issues. \
                Thus morl will not use XPU.")
            return False
    if _HAS_PADDLE:
        import paddle
        if not paddle.is_compiled_with_xpu():
            logger.warning("Found non-empty XPU_VISIBLE_DEVICES. \
                But morl found that Paddle was not complied with XPU, which may cause issues. \
                Thus morl will not use XPU.")
            return False
    return True
 def test_check_grad(self):
     if paddle.is_compiled_with_xpu():
         paddle.enable_static()
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ["Logits"],
                                    "Loss",
                                    max_relative_error=0.2)
Beispiel #8
0
    def test_check_output(self):

        if paddle.is_compiled_with_xpu() and len(
                self.inputs['X'].shape) == len(
                    self.inputs['Y'].shape
                ) and self.inputs['X'].shape[0] == self.inputs['Y'].shape[0]:
            place = paddle.XPUPlace(0)
            self.check_output_with_place(place, atol=1e-3)
 def test_check_grad_ingore_x(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(
             place, ['Y'],
             'Out',
             no_grad_set=set("X"),
             max_relative_error=self.max_relative_error)
 def test_check_grad(self):
     if self.dtype == 'int64' or self.dtype == 'int32':
         pass
     else:
         if paddle.is_compiled_with_xpu():
             paddle.enable_static()
             place = paddle.XPUPlace(0)
             self.check_grad_with_place(place, self.get_x_names(), 'Y')
 def test_check_grad_ingore_y(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(
             place, ['X'],
             'Out',
             no_grad_set=set('Y'),
             check_dygraph=(self.use_mkldnn == False))
Beispiel #12
0
    def test_check_grad_normal(self):

        if paddle.is_compiled_with_xpu() and len(
                self.inputs['X'].shape) == len(
                    self.inputs['Y'].shape
                ) and self.inputs['X'].shape[0] == self.inputs['Y'].shape[0]:
            place = paddle.XPUPlace(0)
            self.check_grad_with_place(place, ['X', 'Y'],
                                       'Out',
                                       max_relative_error=5e-2)
Beispiel #13
0
 def test_grad(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         if not self.is_test:
             var_name_list = self.get_weight_names()
             grad_check_list = ['Input', 'init_h', 'init_c']
             grad_check_list.extend(var_name_list)
             self.check_grad_with_place(place,
                                        set(grad_check_list),
                                        ['Out', 'last_hidden', 'last_cell'],
                                        max_relative_error=0.1)
Beispiel #14
0
def get_env_device():
    """
    Return the device name of running enviroment.
    """
    if paddle.is_compiled_with_cuda():
        return 'gpu'
    elif paddle.is_compiled_with_npu():
        return 'npu'
    elif paddle.is_compiled_with_rocm():
        return 'rocm'
    elif paddle.is_compiled_with_xpu():
        return 'xpu'
    return 'cpu'
Beispiel #15
0
    def __init__(self,
                 layers,
                 strategy=None,
                 comm_buffer_size=25,
                 last_comm_buffer_size=1,
                 find_unused_parameters=False):
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")

        self._layers = layers
        self.find_unused_parameters = find_unused_parameters
        self.grad_need_sync = True

        # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy.
        # It just stores some environment variables, which can be constructed by
        # ParallelEnv. Here it is set as an optional argument.
        # This parameter is not removed because of compatibility with 1.x writing.
        if strategy is not None:
            self._strategy = strategy
        else:
            self._strategy = _build_default_parallel_strategy()

        if self._strategy.nranks > 1:
            # check the environment
            assert parallel_helper.__parallel_ctx__clz__ is not None, \
            "ParallelContext must be initialized before. You should use init_parallel_env() before" \
            "constructing the DataParallel."

            # sync buffer and params
            # TODO(liuyuhui) Currently not support xpu. xpu is
            # still broadcasting parameters when calling layer
            if not paddle.is_compiled_with_xpu():
                sync_params_buffers(self._layers)

            self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
            # NOTE(shenliang03): We can set environment variables to control
            # the size of the group, Default: 1MB. The role of this small group is:
            # when the last group allreduce, the overlap cannot work. Making the
            # the last group small is useful to improve performance.
            self.last_comm_buffer_size = int(last_comm_buffer_size * 1024 *
                                             1024)
            self.init_reducer()
        else:
            warnings.warn(
                "The program will return to single-card operation. "
                "Please check 1, whether you use spawn or fleetrun "
                "to start the program. 2, Whether it is a multi-card "
                "program. 3, Is the current environment multi-card.")
Beispiel #16
0
    def backward(self, retain_graph=False):
        """
        Run backward of current Graph which starts from current Tensor.

        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

        Args:
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.

        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.

        """
        if framework.in_dygraph_mode():
            if paddle.is_compiled_with_xpu():
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
                scaled_loss = scale_loss(self)
                scaled_loss._run_backward(framework._dygraph_tracer(),
                                          retain_graph)
            else:
                self._run_backward(framework._dygraph_tracer(), retain_graph)
        else:
            raise ValueError(
                "Variable.backward() is only available in DyGraph mode")
Beispiel #17
0
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu/npu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu/npu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU/NPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            logger.error(err)
            sys.exit(1)
    except Exception as e:
        pass
 def test_check_output(self):
     if paddle.is_compiled_with_xpu():
         paddle.enable_static()
         place = paddle.XPUPlace(0)
         self.check_output_with_place(place=place, no_check_set=['XShape'])
 def test_check_grad(self):
     if paddle.is_compiled_with_xpu():
         paddle.enable_static()
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ['X'], 'Out')
Beispiel #20
0
 def test_check_grad(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ["X"], "Out")
Beispiel #21
0
        else:
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float64")
    return Out


@unittest.skipIf(not paddle.is_compiled_with_xpu(),
                 "core is not compiled with XPU")
class TestMatMulV2Op(OpTest):
    """
    case 1
    """
    def config(self):
        self.x_shape = (100, )
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False

    def init_kernel_type(self):
        self.dtype = "float32"

    def setUp(self):
 def test_check_grad(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad(set(['X']), 'Out')
 def test_check_output(self):
     if paddle.is_compiled_with_xpu():
         paddle.enable_static()
         place = paddle.XPUPlace(0)
         self.check_output_with_place(place, atol=1e-2)
 def test_check_grad(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ['X'], 'Out', in_place=True)
 def test_check_output(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_output_with_place(place)
Beispiel #26
0
 def test_check_output(self):
     if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_output_with_place(place)
Beispiel #27
0
 def test_check_grad(self):
     if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ['X'], 'Out')
    def backward(self, grad_tensor=None, retain_graph=False):
        """
        Run backward of current Graph which starts from current Tensor.

        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

        Args:
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None, 
            the initial gradient values of the current Tensor would be Tensor filled with 1.0; 
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

                import paddle
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.

                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

        """
        if framework.in_dygraph_mode():
            if grad_tensor is not None:
                if core._in_eager_mode():
                    assert isinstance(
                        grad_tensor, core.eager.EagerTensor
                    ), "The type of grad_tensor must be paddle.Tensor"
                else:
                    assert isinstance(
                        grad_tensor, paddle.Tensor
                    ), "The type of grad_tensor must be paddle.Tensor"
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

            if core._in_eager_mode():
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu():
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
                scaled_loss = scale_loss(self)
                if core._in_eager_mode():
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
            else:
                if core._in_eager_mode():
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only available in DyGraph mode")
Beispiel #29
0
 def test_xpu(self):
     if paddle.is_compiled_with_xpu():
         self.gaussian_random_test(place=fluid.XPUPlace(0))
Beispiel #30
0
 def test_check_grad(self):
     if paddle.is_compiled_with_xpu():
         place = paddle.XPUPlace(0)
         self.check_grad_with_place(place, ['x0'], 'Out')
         self.check_grad_with_place(place, ['x1'], 'Out')
         self.check_grad_with_place(place, ['x2'], 'Out')