Beispiel #1
0
 def init_det(self):
     self.det_preprocess = Sequential([
         ResizeByFactor(32, 960), Div(255),
         Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
             (2, 0, 1))
     ])
     self.filter_func = FilterBoxes(10, 10)
     self.post_func = DBPostProcess({
         "thresh": 0.3,
         "box_thresh": 0.5,
         "max_candidates": 1000,
         "unclip_ratio": 1.5,
         "min_size": 3
     })
Beispiel #2
0
 def preprocess(self, feed=[], fetch=[]):
     data = base64.b64decode(feed[0]["image"].encode('utf8'))
     data = np.fromstring(data, np.uint8)
     im = cv2.imdecode(data, cv2.IMREAD_COLOR)
     ori_h, ori_w, _ = im.shape
     det_img = self.det_preprocess(im)
     _, new_h, new_w = det_img.shape
     det_img = det_img[np.newaxis, :]
     det_img = det_img.copy()
     det_out = self.det_client.predict(
         feed={"x": det_img},
         fetch=["save_infer_model/scale_0.tmp_1"],
         batch=True)
     filter_func = FilterBoxes(10, 10)
     post_func = DBPostProcess({
         "thresh": 0.3,
         "box_thresh": 0.5,
         "max_candidates": 1000,
         "unclip_ratio": 1.5,
         "min_size": 3
     })
     sorted_boxes = SortedBoxes()
     ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
     dt_boxes_list = post_func(det_out["save_infer_model/scale_0.tmp_1"],
                               [ratio_list])
     dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
     dt_boxes = sorted_boxes(dt_boxes)
     get_rotate_crop_image = GetRotateCropImage()
     img_list = []
     max_wh_ratio = 0
     for i, dtbox in enumerate(dt_boxes):
         boximg = get_rotate_crop_image(im, dt_boxes[i])
         img_list.append(boximg)
         h, w = boximg.shape[0:2]
         wh_ratio = w * 1.0 / h
         max_wh_ratio = max(max_wh_ratio, wh_ratio)
     if len(img_list) == 0:
         return [], []
     _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                               max_wh_ratio).shape
     imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
     for id, img in enumerate(img_list):
         norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
         imgs[id] = norm_img
     feed = {"x": imgs.copy()}
     fetch = ["save_infer_model/scale_0.tmp_1"]
     return feed, fetch, True
Beispiel #3
0
 def preprocess(self, feed=[], fetch=[]):
     data = base64.b64decode(feed[0]["image"].encode('utf8'))
     data = np.fromstring(data, np.uint8)
     im = cv2.imdecode(data, cv2.IMREAD_COLOR)
     ori_h, ori_w, _ = im.shape
     det_img = self.det_preprocess(im)
     det_out = self.det_client.predict(feed={"image": det_img},
                                       fetch=["concat_1.tmp_0"],
                                       batch=False)
     _, new_h, new_w = det_img.shape
     filter_func = FilterBoxes(10, 10)
     post_func = DBPostProcess({
         "thresh": 0.3,
         "box_thresh": 0.5,
         "max_candidates": 1000,
         "unclip_ratio": 1.5,
         "min_size": 3
     })
     sorted_boxes = SortedBoxes()
     ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
     dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
     dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
     dt_boxes = sorted_boxes(dt_boxes)
     get_rotate_crop_image = GetRotateCropImage()
     feed_list = []
     img_list = []
     max_wh_ratio = 0
     for i, dtbox in enumerate(dt_boxes):
         boximg = get_rotate_crop_image(im, dt_boxes[i])
         img_list.append(boximg)
         h, w = boximg.shape[0:2]
         wh_ratio = w * 1.0 / h
         max_wh_ratio = max(max_wh_ratio, wh_ratio)
     for img in img_list:
         norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
         feed_list.append(norm_img[np.newaxis, :])
     feed_batch = {"image": np.concatenate(feed_list, axis=0)}
     fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
     return feed_batch, fetch, True