Beispiel #1
0
    def test_ofa(self):
        ofa_model = OFA(self.model,
                        self.run_config,
                        distill_config=self.distill_config,
                        elastic_order=self.elastic_order)

        start_epoch = 0
        for idx in range(len(self.run_config.n_epochs)):
            cur_idx = self.run_config.n_epochs[idx]
            for ph_idx in range(len(cur_idx)):
                cur_lr = self.run_config.init_learning_rate[idx][ph_idx]
                adam = paddle.optimizer.Adam(
                    learning_rate=cur_lr,
                    parameters=(ofa_model.parameters() + ofa_model.netAs_param))
                for epoch_id in range(start_epoch,
                                      self.run_config.n_epochs[idx][ph_idx]):
                    if epoch_id == 0:
                        ofa_model.set_epoch(epoch_id)
                    for model_no in range(self.run_config.dynamic_batch_size[
                            idx]):
                        output, _ = ofa_model(self.data)
                        loss = paddle.mean(output)
                        if self.distill_config.mapping_layers != None:
                            dis_loss = ofa_model.calc_distill_loss()
                            loss += dis_loss
                            dis_loss = dis_loss.numpy()[0]
                        else:
                            dis_loss = 0
                        print('epoch: {}, loss: {}, distill loss: {}'.format(
                            epoch_id, loss.numpy()[0], dis_loss))
                        loss.backward()
                        adam.minimize(loss)
                        adam.clear_gradients()
                start_epoch = self.run_config.n_epochs[idx][ph_idx]
Beispiel #2
0
class TestOFAV2(unittest.TestCase):
    def setUp(self):
        model = ModelV1()
        sp_net_config = supernet(expand_ratio=[0.25, 0.5, 1.0])
        self.model = Convert(sp_net_config).convert(model)
        self.images = paddle.randn(shape=[2, 3, 32, 32], dtype='float32')

    def test_ofa(self):
        self.ofa_model = OFA(self.model)
        self.ofa_model.set_epoch(0)
        self.ofa_model.set_task('expand_ratio')
        out, _ = self.ofa_model(self.images)
Beispiel #3
0
class TestExportCase1(unittest.TestCase):
    def setUp(self):
        model = ModelLinear1()
        data_np = np.random.random((3, 64)).astype(np.int64)
        self.data = paddle.to_tensor(data_np)
        self.ofa_model = OFA(model)
        self.ofa_model.set_epoch(0)
        outs, _ = self.ofa_model(self.data)
        self.config = self.ofa_model.current_config

    def test_export_model(self):
        self.ofa_model.export(
            self.config, input_shapes=[[3, 64]], input_dtypes=['int64'])
        assert len(self.ofa_model.ofa_layers) == 4
Beispiel #4
0
class Testelementwise(unittest.TestCase):
    def setUp(self):
        model = ModelElementwise()
        sp_net_config = supernet(expand_ratio=[0.25, 0.5, 1.0])
        self.model = Convert(sp_net_config).convert(model)
        self.images = paddle.randn(shape=[2, 3, 32, 32], dtype='float32')

    def test_elementwise(self):
        self.ofa_model = OFA(self.model)
        self.ofa_model.set_epoch(0)
        self.ofa_model.set_task('expand_ratio')
        out, _ = self.ofa_model(self.images)
        assert list(
            self.ofa_model._ofa_layers.keys()) == ['conv2.0', 'conv3.0']
Beispiel #5
0
class TestMultiExit(unittest.TestCase):
    def setUp(self):
        self.images = paddle.randn(shape=[1, 3, 224, 224], dtype='float32')
        model = ModelMultiExit()
        sp_net_config = supernet(expand_ratio=[0.25, 0.5, 1.0])
        self.model = Convert(sp_net_config).convert(model)

    def test_multiexit(self):
        self.ofa_model = OFA(self.model)
        self.ofa_model.set_epoch(0)
        self.ofa_model.set_task('expand_ratio')
        out, _ = self.ofa_model(self.images)
        assert list(self.ofa_model._ofa_layers.keys()) == [
            'conv1.0', 'block1.0', 'block1.4', 'block2.0', 'out2.0'
        ]
Beispiel #6
0
class TestExportCase2(unittest.TestCase):
    def setUp(self):
        model = ModelLinear()
        data_np = np.random.random((3, 64)).astype(np.int64)
        self.data = paddle.to_tensor(data_np)
        self.ofa_model = OFA(model)
        self.ofa_model.set_epoch(0)
        outs, _ = self.ofa_model(self.data)
        self.config = self.ofa_model.current_config

    def test_export_model_linear2(self):
        config = self.ofa_model._sample_config(
            task='expand_ratio', phase=None, sample_type='smallest')
        ex_model = self.ofa_model.export(
            config, input_shapes=[[3, 64]], input_dtypes=['int64'])
        ex_model(self.data)
        assert len(self.ofa_model.ofa_layers) == 3
Beispiel #7
0
class TestShortCut(unittest.TestCase):
    def setUp(self):
        model = resnet50()
        sp_net_config = supernet(expand_ratio=[0.25, 0.5, 1.0])
        self.model = Convert(sp_net_config).convert(model)
        self.images = paddle.randn(shape=[2, 3, 224, 224], dtype='float32')
        self._test_clear_search_space()

    def _test_clear_search_space(self):
        self.ofa_model = OFA(self.model)
        self.ofa_model.set_epoch(0)
        outs, _ = self.ofa_model(self.images)
        self.config = self.ofa_model.current_config

    def test_export_model(self):
        self.ofa_model.export(
            self.config,
            input_shapes=[[2, 3, 224, 224]],
            input_dtypes=['float32'])
        assert len(self.ofa_model.ofa_layers) == 37
Beispiel #8
0
class TestShortcutSkiplayers(unittest.TestCase):
    def setUp(self):
        model = ModelShortcut()
        sp_net_config = supernet(expand_ratio=[0.5, 1.0])
        self.model = Convert(sp_net_config).convert(model)
        self.images = paddle.randn(shape=[2, 3, 32, 32], dtype='float32')
        self.init_config()
        self.ofa_model = OFA(self.model, run_config=self.run_config)
        self.ofa_model._clear_search_space(self.images)

    def init_config(self):
        default_run_config = {'skip_layers': ['branch1.6']}
        self.run_config = RunConfig(**default_run_config)

    def test_shortcut(self):
        self.ofa_model.set_epoch(0)
        self.ofa_model.set_task('expand_ratio')
        for i in range(5):
            self.ofa_model(self.images)
        assert list(self.ofa_model._ofa_layers.keys()) == ['branch2.0']
Beispiel #9
0
def do_train(args):
    paddle.set_device("gpu" if args.n_gpu else "cpu")
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)

    args.task_name = args.task_name.lower()
    dataset_class, metric_class = TASK_CLASSES[args.task_name]
    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    train_ds = dataset_class.get_datasets(['train'])

    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    trans_func = partial(convert_example,
                         tokenizer=tokenizer,
                         label_list=train_ds.get_labels(),
                         max_seq_length=args.max_seq_length)
    train_ds = train_ds.apply(trans_func, lazy=True)
    train_batch_sampler = paddle.io.DistributedBatchSampler(
        train_ds, batch_size=args.batch_size, shuffle=True)
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # segment
        Stack(),  # length
        Stack(dtype="int64" if train_ds.get_labels() else "float32")  # label
    ): [data for i, data in enumerate(fn(samples)) if i != 2]
    train_data_loader = DataLoader(dataset=train_ds,
                                   batch_sampler=train_batch_sampler,
                                   collate_fn=batchify_fn,
                                   num_workers=0,
                                   return_list=True)
    if args.task_name == "mnli":
        dev_dataset_matched, dev_dataset_mismatched = dataset_class.get_datasets(
            ["dev_matched", "dev_mismatched"])
        dev_dataset_matched = dev_dataset_matched.apply(trans_func, lazy=True)
        dev_dataset_mismatched = dev_dataset_mismatched.apply(trans_func,
                                                              lazy=True)
        dev_batch_sampler_matched = paddle.io.BatchSampler(
            dev_dataset_matched, batch_size=args.batch_size, shuffle=False)
        dev_data_loader_matched = DataLoader(
            dataset=dev_dataset_matched,
            batch_sampler=dev_batch_sampler_matched,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)
        dev_batch_sampler_mismatched = paddle.io.BatchSampler(
            dev_dataset_mismatched, batch_size=args.batch_size, shuffle=False)
        dev_data_loader_mismatched = DataLoader(
            dataset=dev_dataset_mismatched,
            batch_sampler=dev_batch_sampler_mismatched,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)
    else:
        dev_dataset = dataset_class.get_datasets(["dev"])
        dev_dataset = dev_dataset.apply(trans_func, lazy=True)
        dev_batch_sampler = paddle.io.BatchSampler(dev_dataset,
                                                   batch_size=args.batch_size,
                                                   shuffle=False)
        dev_data_loader = DataLoader(dataset=dev_dataset,
                                     batch_sampler=dev_batch_sampler,
                                     collate_fn=batchify_fn,
                                     num_workers=0,
                                     return_list=True)

    num_labels = 1 if train_ds.get_labels() == None else len(
        train_ds.get_labels())

    model = model_class.from_pretrained(args.model_name_or_path,
                                        num_classes=num_labels)
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    # Step1: Initialize a dictionary to save the weights from the origin BERT model.
    origin_weights = {}
    for name, param in model.named_parameters():
        origin_weights[name] = param

    # Step2: Convert origin model to supernet.
    sp_config = supernet(expand_ratio=args.width_mult_list)
    model = Convert(sp_config).convert(model)
    # Use weights saved in the dictionary to initialize supernet.
    utils.set_state_dict(model, origin_weights)
    del origin_weights

    # Step3: Define teacher model.
    teacher_model = model_class.from_pretrained(args.model_name_or_path,
                                                num_classes=num_labels)

    # Step4: Config about distillation.
    mapping_layers = ['bert.embeddings']
    for idx in range(model.bert.config['num_hidden_layers']):
        mapping_layers.append('bert.encoder.layers.{}'.format(idx))

    default_distill_config = {
        'lambda_distill': 0.1,
        'teacher_model': teacher_model,
        'mapping_layers': mapping_layers,
    }
    distill_config = DistillConfig(**default_distill_config)

    # Step5: Config in supernet training.
    ofa_model = OFA(model,
                    distill_config=distill_config,
                    elastic_order=['width'])

    criterion = paddle.nn.loss.CrossEntropyLoss() if train_ds.get_labels(
    ) else paddle.nn.loss.MSELoss()

    metric = metric_class()

    if args.task_name == "mnli":
        dev_data_loader = (dev_data_loader_matched, dev_data_loader_mismatched)

    # Step6: Calculate the importance of neurons and head,
    # and then reorder them according to the importance.
    head_importance, neuron_importance = utils.compute_neuron_head_importance(
        args.task_name,
        ofa_model.model,
        dev_data_loader,
        loss_fct=criterion,
        num_layers=model.bert.config['num_hidden_layers'],
        num_heads=model.bert.config['num_attention_heads'])
    reorder_neuron_head(ofa_model.model, head_importance, neuron_importance)

    lr_scheduler = paddle.optimizer.lr.LambdaDecay(
        args.learning_rate,
        lambda current_step, num_warmup_steps=args.warmup_steps,
        num_training_steps=args.max_steps if args.max_steps > 0 else
        (len(train_data_loader) * args.num_train_epochs): float(
            current_step) / float(max(1, num_warmup_steps))
        if current_step < num_warmup_steps else max(
            0.0,
            float(num_training_steps - current_step) / float(
                max(1, num_training_steps - num_warmup_steps))))

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=ofa_model.model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in ofa_model.model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])

    global_step = 0
    tic_train = time.time()
    for epoch in range(args.num_train_epochs):
        # Step7: Set current epoch and task.
        ofa_model.set_epoch(epoch)
        ofa_model.set_task('width')

        for step, batch in enumerate(train_data_loader):
            global_step += 1
            input_ids, segment_ids, labels = batch

            for width_mult in args.width_mult_list:
                # Step8: Broadcast supernet config from width_mult,
                # and use this config in supernet training.
                net_config = apply_config(ofa_model, width_mult)
                ofa_model.set_net_config(net_config)
                logits, teacher_logits = ofa_model(input_ids,
                                                   segment_ids,
                                                   attention_mask=[None, None])
                rep_loss = ofa_model.calc_distill_loss()
                if args.task_name == 'sts-b':
                    logit_loss = 0.0
                else:
                    logit_loss = soft_cross_entropy(logits,
                                                    teacher_logits.detach())
                loss = rep_loss + args.lambda_logit * logit_loss
                loss.backward()
            optimizer.step()
            lr_scheduler.step()
            ofa_model.model.clear_gradients()

            if global_step % args.logging_steps == 0:
                if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0:
                    logger.info(
                        "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                        % (global_step, epoch, step, loss, args.logging_steps /
                           (time.time() - tic_train)))
                tic_train = time.time()

            if global_step % args.save_steps == 0:
                if args.task_name == "mnli":
                    evaluate(teacher_model,
                             criterion,
                             metric,
                             dev_data_loader_matched,
                             width_mult=100)
                    evaluate(teacher_model,
                             criterion,
                             metric,
                             dev_data_loader_mismatched,
                             width_mult=100)
                else:
                    evaluate(teacher_model,
                             criterion,
                             metric,
                             dev_data_loader,
                             width_mult=100)
                for idx, width_mult in enumerate(args.width_mult_list):
                    net_config = apply_config(ofa_model, width_mult)
                    ofa_model.set_net_config(net_config)
                    tic_eval = time.time()
                    if args.task_name == "mnli":
                        acc = evaluate(ofa_model, criterion, metric,
                                       dev_data_loader_matched, width_mult)
                        evaluate(ofa_model, criterion, metric,
                                 dev_data_loader_mismatched, width_mult)
                        print("eval done total : %s s" %
                              (time.time() - tic_eval))
                    else:
                        acc = evaluate(ofa_model, criterion, metric,
                                       dev_data_loader, width_mult)
                        print("eval done total : %s s" %
                              (time.time() - tic_eval))

                    if (not args.n_gpu > 1
                        ) or paddle.distributed.get_rank() == 0:
                        output_dir = os.path.join(args.output_dir,
                                                  "model_%d" % global_step)
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
                        # need better way to get inner model of DataParallel
                        model_to_save = model._layers if isinstance(
                            model, paddle.DataParallel) else model
                        model_to_save.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
Beispiel #10
0
        g_clip = F.clip.GradientClipByGlobalNorm(1.0)  #experimental
        if args.use_lr_decay:
            opt = AdamW(learning_rate=LinearDecay(
                args.lr, int(args.warmup_proportion * args.max_steps),
                args.max_steps),
                        parameter_list=ofa_model.model.parameters(),
                        weight_decay=args.wd,
                        grad_clip=g_clip)
        else:
            opt = AdamW(args.lr,
                        parameter_list=ofa_model.model.parameters(),
                        weight_decay=args.wd,
                        grad_clip=g_clip)

        for epoch in range(max(run_config.n_epochs[-1])):
            ofa_model.set_epoch(epoch)
            if epoch <= int(max(run_config.n_epochs[0])):
                ofa_model.set_task('width')
                depth_mult_list = [1.0]
            else:
                ofa_model.set_task('depth')
                depth_mult_list = run_config.elastic_depth
            for step, d in enumerate(
                    tqdm(train_ds.start(place), desc='training')):
                ids, sids, label = d

                accumulate_gradients = dict()
                for param in opt._parameter_list:
                    accumulate_gradients[param.name] = 0.0

                for depth_mult in depth_mult_list:
Beispiel #11
0
def do_train(args):
    paddle.set_device(args.device)
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)

    args.task_name = args.task_name.lower()
    metric_class = METRIC_CLASSES[args.task_name]
    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    train_ds = load_dataset('clue', args.task_name, splits='train')
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)

    trans_func = partial(convert_example,
                         label_list=train_ds.label_list,
                         tokenizer=tokenizer,
                         max_seq_length=args.max_seq_length)
    train_ds = train_ds.map(trans_func, lazy=True)
    train_batch_sampler = paddle.io.DistributedBatchSampler(
        train_ds, batch_size=args.batch_size, shuffle=True)
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
        Pad(axis=0, pad_val=tokenizer.pad_token_type_id),  # segment
        Stack(dtype="int64" if train_ds.label_list else "float32")  # label
    ): fn(samples)

    train_data_loader = DataLoader(dataset=train_ds,
                                   batch_sampler=train_batch_sampler,
                                   collate_fn=batchify_fn,
                                   num_workers=0,
                                   return_list=True)

    dev_ds = load_dataset('clue', args.task_name, splits='dev')
    dev_ds = dev_ds.map(trans_func, lazy=True)
    dev_batch_sampler = paddle.io.BatchSampler(dev_ds,
                                               batch_size=args.batch_size,
                                               shuffle=False)
    dev_data_loader = DataLoader(dataset=dev_ds,
                                 batch_sampler=dev_batch_sampler,
                                 collate_fn=batchify_fn,
                                 num_workers=0,
                                 return_list=True)
    num_labels = 1 if train_ds.label_list == None else len(train_ds.label_list)

    model = model_class.from_pretrained(args.model_name_or_path,
                                        num_classes=num_labels)

    # Step1: Initialize a dictionary to save the weights from the origin PPMiniLM model.
    origin_weights = model.state_dict()

    # Step2: Convert origin model to supernet.
    sp_config = supernet(expand_ratio=[1.0])
    model = Convert(sp_config).convert(model)
    # Use weights saved in the dictionary to initialize supernet.
    utils.set_state_dict(model, origin_weights)
    del origin_weights

    super_sd = paddle.load(
        os.path.join(args.model_name_or_path, 'model_state.pdparams'))
    model.set_state_dict(super_sd)

    # Step3: Define teacher model.
    teacher_model = model_class.from_pretrained(args.model_name_or_path,
                                                num_classes=num_labels)

    # Step4: Config about distillation.
    mapping_layers = ['ppminilm.embeddings']
    for idx in range(model.ppminilm.config['num_hidden_layers']):
        mapping_layers.append('ppminilm.encoder.layers.{}'.format(idx))

    default_distill_config = {
        'lambda_distill': 0.1,
        'teacher_model': teacher_model,
        'mapping_layers': mapping_layers,
    }
    distill_config = DistillConfig(**default_distill_config)

    # Step5: Config in supernet training.
    ofa_model = OFA(model,
                    distill_config=distill_config,
                    elastic_order=['width'])

    criterion = paddle.nn.loss.CrossEntropyLoss(
    ) if train_ds.label_list else paddle.nn.loss.MSELoss()

    metric = metric_class()

    #### Step6: Calculate the importance of neurons and head,
    #### and then reorder them according to the importance.
    head_importance, neuron_importance = nlp_utils.compute_neuron_head_importance(
        args.task_name,
        ofa_model.model,
        dev_data_loader,
        loss_fct=criterion,
        num_layers=model.ppminilm.config['num_hidden_layers'],
        num_heads=model.ppminilm.config['num_attention_heads'])
    reorder_neuron_head(ofa_model.model, head_importance, neuron_importance)

    if paddle.distributed.get_world_size() > 1:
        ofa_model.model = paddle.DataParallel(ofa_model.model)

    if args.max_steps > 0:
        num_training_steps = args.max_steps
        num_train_epochs = math.ceil(num_training_steps /
                                     len(train_data_loader))
    else:
        num_training_steps = len(train_data_loader) * args.num_train_epochs
        num_train_epochs = args.num_train_epochs

    warmup = args.warmup_steps if args.warmup_steps > 0 else args.warmup_proportion

    lr_scheduler = LinearDecayWithWarmup(args.learning_rate,
                                         num_training_steps, warmup)

    # Generate parameter names needed to perform weight decay.
    # All bias and LayerNorm parameters are excluded.
    decay_params = [
        p.name for n, p in model.named_parameters()
        if not any(nd in n for nd in ["bias", "norm"])
    ]

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        beta1=0.9,
        beta2=0.999,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in decay_params,
        grad_clip=nn.ClipGradByGlobalNorm(args.max_grad_norm))

    global_step = 0
    tic_train = time.time()
    best_res = 0.0
    for epoch in range(num_train_epochs):
        # Step7: Set current epoch and task.
        ofa_model.set_epoch(epoch)
        ofa_model.set_task('width')

        for step, batch in enumerate(train_data_loader):
            global_step += 1
            input_ids, segment_ids, labels = batch

            for width_mult in args.width_mult_list:
                # Step8: Broadcast supernet config from width_mult,
                # and use this config in supernet training.
                net_config = utils.dynabert_config(ofa_model, width_mult)
                ofa_model.set_net_config(net_config)
                logits, teacher_logits = ofa_model(input_ids,
                                                   segment_ids,
                                                   attention_mask=[None, None])
                rep_loss = ofa_model.calc_distill_loss()
                logit_loss = soft_cross_entropy(logits,
                                                teacher_logits.detach())
                loss = rep_loss + args.lambda_logit * logit_loss
                loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.clear_grad()

            if global_step % args.logging_steps == 0:
                logger.info(
                    "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                    % (global_step, epoch, step, loss, args.logging_steps /
                       (time.time() - tic_train)))
                tic_train = time.time()

            if global_step % args.save_steps == 0 or global_step == num_training_steps:
                tic_eval = time.time()
                evaluate(teacher_model,
                         metric,
                         dev_data_loader,
                         width_mult=100)
                print("eval done total : %s s" % (time.time() - tic_eval))
                for idx, width_mult in enumerate(args.width_mult_list):
                    net_config = utils.dynabert_config(ofa_model, width_mult)
                    ofa_model.set_net_config(net_config)
                    tic_eval = time.time()
                    res = evaluate(ofa_model, metric, dev_data_loader,
                                   width_mult)
                    print("eval done total : %s s" % (time.time() - tic_eval))

                    if best_res < res:
                        output_dir = args.output_dir
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
                        # need better way to get inner model of DataParallel
                        model_to_save = model._layers if isinstance(
                            model, paddle.DataParallel) else model
                        model_to_save.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        best_res = res
            if global_step >= num_training_steps:
                print("best_res: ", best_res)
                return
    print("best_res: ", best_res)
def do_train(args):
    paddle.set_device(args.device)
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)

    args.task_name = args.task_name.lower()
    metric_class = METRIC_CLASSES[args.task_name]
    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    train_ds = load_dataset('glue', args.task_name, splits="train")

    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    trans_func = partial(
        convert_example,
        tokenizer=tokenizer,
        label_list=train_ds.label_list,
        max_seq_length=args.max_seq_length)
    train_ds = train_ds.map(trans_func, lazy=True)
    train_batch_sampler = paddle.io.DistributedBatchSampler(
        train_ds, batch_size=args.batch_size, shuffle=True)
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
        Pad(axis=0, pad_val=tokenizer.pad_token_type_id),  # segment
        Stack(dtype="int64" if train_ds.label_list else "float32")  # label
    ): fn(samples)
    train_data_loader = DataLoader(
        dataset=train_ds,
        batch_sampler=train_batch_sampler,
        collate_fn=batchify_fn,
        num_workers=0,
        return_list=True)
    if args.task_name == "mnli":
        dev_ds_matched, dev_ds_mismatched = load_dataset(
            'glue', args.task_name, splits=["dev_matched", "dev_mismatched"])
        dev_ds_matched = dev_ds_matched.map(trans_func, lazy=True)
        dev_ds_mismatched = dev_ds_mismatched.map(trans_func, lazy=True)
        dev_batch_sampler_matched = paddle.io.BatchSampler(
            dev_ds_matched, batch_size=args.batch_size, shuffle=False)
        dev_data_loader_matched = DataLoader(
            dataset=dev_ds_matched,
            batch_sampler=dev_batch_sampler_matched,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)
        dev_batch_sampler_mismatched = paddle.io.BatchSampler(
            dev_ds_mismatched, batch_size=args.batch_size, shuffle=False)
        dev_data_loader_mismatched = DataLoader(
            dataset=dev_ds_mismatched,
            batch_sampler=dev_batch_sampler_mismatched,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)
    else:
        dev_ds = load_dataset('glue', args.task_name, splits='dev')
        dev_ds = dev_ds.map(trans_func, lazy=True)
        dev_batch_sampler = paddle.io.BatchSampler(
            dev_ds, batch_size=args.batch_size, shuffle=False)
        dev_data_loader = DataLoader(
            dataset=dev_ds,
            batch_sampler=dev_batch_sampler,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)

    num_labels = 1 if train_ds.label_list == None else len(train_ds.label_list)

    # Step1: Initialize the origin BERT model.
    model = model_class.from_pretrained(
        args.model_name_or_path, num_classes=num_labels)
    origin_weights = model.state_dict()

    # Step2: Convert origin model to supernet.
    sp_config = supernet(expand_ratio=args.width_mult_list)
    model = Convert(sp_config).convert(model)
    # Use weights saved in the dictionary to initialize supernet. 
    utils.set_state_dict(model, origin_weights)

    # Step3: Define teacher model.
    teacher_model = model_class.from_pretrained(
        args.model_name_or_path, num_classes=num_labels)
    new_dict = utils.utils.remove_model_fn(teacher_model, origin_weights)
    teacher_model.set_state_dict(new_dict)
    del origin_weights, new_dict

    default_run_config = {'elastic_depth': args.depth_mult_list}
    run_config = RunConfig(**default_run_config)

    # Step4: Config about distillation.
    mapping_layers = ['bert.embeddings']
    for idx in range(model.bert.config['num_hidden_layers']):
        mapping_layers.append('bert.encoder.layers.{}'.format(idx))

    default_distill_config = {
        'lambda_distill': args.lambda_rep,
        'teacher_model': teacher_model,
        'mapping_layers': mapping_layers,
    }
    distill_config = DistillConfig(**default_distill_config)

    # Step5: Config in supernet training.
    ofa_model = OFA(model,
                    run_config=run_config,
                    distill_config=distill_config,
                    elastic_order=['depth'])
    #elastic_order=['width'])

    criterion = paddle.nn.CrossEntropyLoss(
    ) if train_ds.label_list else paddle.nn.MSELoss()

    metric = metric_class()

    if args.task_name == "mnli":
        dev_data_loader = (dev_data_loader_matched, dev_data_loader_mismatched)

    if paddle.distributed.get_world_size() > 1:
        ofa_model.model = paddle.DataParallel(
            ofa_model.model, find_unused_parameters=True)

    if args.max_steps > 0:
        num_training_steps = args.max_steps
        num_train_epochs = math.ceil(num_training_steps /
                                     len(train_data_loader))
    else:
        num_training_steps = len(train_data_loader) * args.num_train_epochs
        num_train_epochs = args.num_train_epochs

    lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps,
                                         args.warmup_steps)

    # Generate parameter names needed to perform weight decay.
    # All bias and LayerNorm parameters are excluded.
    decay_params = [
        p.name for n, p in model.named_parameters()
        if not any(nd in n for nd in ["bias", "norm"])
    ]
    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=ofa_model.model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in decay_params)

    global_step = 0
    tic_train = time.time()
    for epoch in range(num_train_epochs):
        # Step6: Set current epoch and task.
        ofa_model.set_epoch(epoch)
        ofa_model.set_task('depth')

        for step, batch in enumerate(train_data_loader):
            global_step += 1
            input_ids, segment_ids, labels = batch

            for depth_mult in args.depth_mult_list:
                for width_mult in args.width_mult_list:
                    # Step7: Broadcast supernet config from width_mult,
                    # and use this config in supernet training.
                    net_config = utils.dynabert_config(ofa_model, width_mult,
                                                       depth_mult)
                    ofa_model.set_net_config(net_config)
                    logits, teacher_logits = ofa_model(
                        input_ids, segment_ids, attention_mask=[None, None])
                    rep_loss = ofa_model.calc_distill_loss()
                    if args.task_name == 'sts-b':
                        logit_loss = 0.0
                    else:
                        logit_loss = soft_cross_entropy(logits,
                                                        teacher_logits.detach())
                    loss = rep_loss + args.lambda_logit * logit_loss
                    loss.backward()
            optimizer.step()
            lr_scheduler.step()
            ofa_model.model.clear_gradients()

            if global_step % args.logging_steps == 0:
                if paddle.distributed.get_rank() == 0:
                    logger.info(
                        "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                        % (global_step, epoch, step, loss,
                           args.logging_steps / (time.time() - tic_train)))
                tic_train = time.time()

            if global_step % args.save_steps == 0:
                if args.task_name == "mnli":
                    evaluate(
                        teacher_model,
                        criterion,
                        metric,
                        dev_data_loader_matched,
                        width_mult=100)
                    evaluate(
                        teacher_model,
                        criterion,
                        metric,
                        dev_data_loader_mismatched,
                        width_mult=100)
                else:
                    evaluate(
                        teacher_model,
                        criterion,
                        metric,
                        dev_data_loader,
                        width_mult=100)
                for depth_mult in args.depth_mult_list:
                    for width_mult in args.width_mult_list:
                        net_config = utils.dynabert_config(
                            ofa_model, width_mult, depth_mult)
                        ofa_model.set_net_config(net_config)
                        tic_eval = time.time()
                        if args.task_name == "mnli":
                            acc = evaluate(ofa_model, criterion, metric,
                                           dev_data_loader_matched, width_mult,
                                           depth_mult)
                            evaluate(ofa_model, criterion, metric,
                                     dev_data_loader_mismatched, width_mult,
                                     depth_mult)
                            print("eval done total : %s s" %
                                  (time.time() - tic_eval))
                        else:
                            acc = evaluate(ofa_model, criterion, metric,
                                           dev_data_loader, width_mult,
                                           depth_mult)
                            print("eval done total : %s s" %
                                  (time.time() - tic_eval))

                        if paddle.distributed.get_rank() == 0:
                            output_dir = os.path.join(args.output_dir,
                                                      "model_%d" % global_step)
                            if not os.path.exists(output_dir):
                                os.makedirs(output_dir)
                            # need better way to get inner model of DataParallel
                            model_to_save = model._layers if isinstance(
                                model, paddle.DataParallel) else model
                            model_to_save.save_pretrained(output_dir)
                            tokenizer.save_pretrained(output_dir)
            if global_step >= num_training_steps:
                return
Beispiel #13
0
    def __call__(self, model, param_state_dict):

        paddleslim = try_import('paddleslim')
        from paddleslim.nas.ofa import OFA, RunConfig, utils
        from paddleslim.nas.ofa.convert_super import Convert, supernet
        task = self.ofa_config['task']
        expand_ratio = self.ofa_config['expand_ratio']

        skip_neck = self.ofa_config['skip_neck']
        skip_head = self.ofa_config['skip_head']

        run_config = self.ofa_config['RunConfig']
        if 'skip_layers' in run_config:
            skip_layers = run_config['skip_layers']
        else:
            skip_layers = []

        # supernet config
        sp_config = supernet(expand_ratio=expand_ratio)
        # convert to supernet
        model = Convert(sp_config).convert(model)

        skip_names = []
        if skip_neck:
            skip_names.append('neck.')
        if skip_head:
            skip_names.append('head.')

        for name, sublayer in model.named_sublayers():
            for n in skip_names:
                if n in name:
                    skip_layers.append(name)

        run_config['skip_layers'] = skip_layers
        run_config = RunConfig(**run_config)

        # build ofa model
        ofa_model = OFA(model, run_config=run_config)

        ofa_model.set_epoch(0)
        ofa_model.set_task(task)

        input_spec = [{
            "image": paddle.ones(
                shape=[1, 3, 640, 640], dtype='float32'),
            "im_shape": paddle.full(
                [1, 2], 640, dtype='float32'),
            "scale_factor": paddle.ones(
                shape=[1, 2], dtype='float32')
        }]

        ofa_model._clear_search_space(input_spec=input_spec)
        ofa_model._build_ss = True
        check_ss = ofa_model._sample_config('expand_ratio', phase=None)
        # tokenize the search space
        ofa_model.tokenize()
        # check token map, search cands and search space
        logger.info('Token map is {}'.format(ofa_model.token_map))
        logger.info('Search candidates is {}'.format(ofa_model.search_cands))
        logger.info('The length of search_space is {}, search_space is {}'.
                    format(len(ofa_model._ofa_layers), ofa_model._ofa_layers))
        # set model state dict into ofa model
        utils.set_state_dict(ofa_model.model, param_state_dict)
        return ofa_model