Beispiel #1
0
def normalize(x, eps=1e-6):
    """Apply min-max normalization."""
    x = x.contiguous()
    N, C, H, W = x.size()
    x_ = x.view(N * C, -1)
    max_val = porch.max(x_, dim=1, keepdim=True)[0]
    min_val = porch.min(x_, dim=1, keepdim=True)[0]
    x_ = (x_ - min_val) / (max_val - min_val + eps)
    out = x_.view(N, C, H, W)
    return out
Beispiel #2
0
def normalize(x, eps=1e-6):
    """Apply min-max normalization."""
    # x = x.contiguous()
    x = torch.varbase_to_tensor(x)
    N, C, H, W = x.shape
    x_ = x.view(N * C, -1)
    max_val = torch.max(x_, dim=1, keepdim=True)[0]
    min_val = torch.min(x_, dim=1, keepdim=True)[0]
    x_ = (x_ - min_val) / (max_val - min_val + eps)
    x_ = torch.varbase_to_tensor(x_)
    out = x_.view(N, C, H, W)
    return out
Beispiel #3
0
 def min(self):
     return torch.min(self)