def _run_family(self, family_name): family = self.families[family_name] glm_res = glm.fit_glm(self.input, self.exog, family) f = glm.f_test(glm_res.beta, self.contrast, glm_res.normalized_cov_params, glm_res.scale) f = np.reshape(f, (len(f),)) smoothed_f = glm.f_test(glm_res.beta, self.contrast, glm_res.normalized_cov_params, glm_res.scale, smoothing=np.zeros(3)) got = { 'beta' : glm_res.beta, 'mu' : glm_res.mu, 'weights' : glm_res.weights, 'f_values' : f } for (name, values) in got.items(): print("Doing " + name) filename = 'pade/test/glm/{0}_{1}.txt'.format(family_name, name) expected = np.genfromtxt(filename) np.testing.assert_almost_equal(expected, values) for i in range(3): np.testing.assert_almost_equal(expected, values) filename = 'pade/test/glm/{0}_{1}.txt'.format(family_name, 'f_values') expected = np.genfromtxt(filename) for i in range(3): np.testing.assert_almost_equal(expected, smoothed_f[i].reshape(len(smoothed_f[i])))
def new_glm(y, x, family, contrast): models = [] fitteds = [] fs = [] f = None (params, mu, weights, cov_p, scale) = glm.fit_glm(y, x, family) f = glm.f_test(params, contrast, cov_p, scale, smoothing=np.arange(10))
def new_glm(y, x, family, contrast): models = [] fitteds = [] fs = [] f = None (params, mu, weights, cov_p, scale) = glm.fit_glm(y, x, family) f = glm.f_test(params, contrast, cov_p, scale) return GlmResults(y, x, family, contrast, params, mu, weights, f)
def _run_family(self, family_name): family = self.families[family_name] glm_res = glm.fit_glm(self.input, self.exog, family) f = glm.f_test(glm_res.beta, self.contrast, glm_res.normalized_cov_params, glm_res.scale) f = np.reshape(f, (len(f), )) smoothed_f = glm.f_test(glm_res.beta, self.contrast, glm_res.normalized_cov_params, glm_res.scale, smoothing=np.zeros(3)) got = { 'beta': glm_res.beta, 'mu': glm_res.mu, 'weights': glm_res.weights, 'f_values': f } for (name, values) in got.items(): print("Doing " + name) filename = 'pade/test/glm/{0}_{1}.txt'.format(family_name, name) expected = np.genfromtxt(filename) np.testing.assert_almost_equal(expected, values) for i in range(3): np.testing.assert_almost_equal(expected, values) filename = 'pade/test/glm/{0}_{1}.txt'.format(family_name, 'f_values') expected = np.genfromtxt(filename) for i in range(3): np.testing.assert_almost_equal( expected, smoothed_f[i].reshape(len(smoothed_f[i])))
def __call__(self, data): num_regressors = len(self.layout_full) num_restrictions = num_regressors - 1 x = self.x contrast = self.contrast y = data family = self.family if np.ndim(y) == 1: raise Exception("I only do 2d arrays") shrink = self.shrink if shrink: ctor = GLM_FAMILIES['negative_binomial'] family = ctor() print( "Using shrinkage estimator of dispersal in negative binomial GLM." ) raise Exception("yay!") m = len(y) alphas = self.alphas if alphas is None: res = np.zeros(m) else: res = np.zeros((len(alphas), m)) glm_res = glm.fit_glm(y, x, family) kwargs = {} if self.alphas is not None: kwargs['smoothing'] = alphas res = glm.f_test(glm_res.beta, contrast, glm_res.normalized_cov_params, glm_res.scale, **kwargs) # For some reason the f-test returns an array with two extra dims return res.reshape(res.shape[:-2])
def __call__(self, data): num_regressors = len(self.layout_full) num_restrictions = num_regressors - 1 x = self.x contrast = self.contrast y = data family = self.family if np.ndim(y) == 1: raise Exception("I only do 2d arrays") shrink = self.shrink if shrink: ctor = GLM_FAMILIES['negative_binomial'] family = ctor() print("Using shrinkage estimator of dispersal in negative binomial GLM.") raise Exception("yay!") m = len(y) alphas = self.alphas if alphas is None: res = np.zeros(m) else: res = np.zeros((len(alphas), m)) glm_res = glm.fit_glm(y, x, family) kwargs = {} if self.alphas is not None: kwargs['smoothing'] = alphas res = glm.f_test(glm_res.beta, contrast, glm_res.normalized_cov_params, glm_res.scale, **kwargs) # For some reason the f-test returns an array with two extra dims return res.reshape(res.shape[:-2])