Beispiel #1
0
def is_device_home(url, device):
    n = len(device)
    _, _, host, path = url.split('/', 3)
    addr = socket.getaddrinfo(host, 80)[0][-1]
    s = socket.socket()
    s.connect(addr)
    s.send(bytes('GET /%s HTTP/1.0\r\nHost: %s\r\n\r\n' % (path, host), 'utf8'))
    result = False

    pairwise = Pairwise()

    # return HTTP request to the url text in bytes
    while True:
        data = s.recv(n)

        if not data:
            break

        pairwise.add_next(data)
        if pairwise.contains(device):
            result = True
            break
    s.close()
    return result
Beispiel #2
0
    def setup(self):
        nn = self.options['num_nodes']
        r_space = self.options['r_space']
        pairs = self.options['ignored_pairs']
        self.linear_solver = DirectSolver()
        self.add_subsystem('t_imp', SumComp(num_nodes=nn, num_arrays=n_traj))

        for i in range(n_traj):
            self.add_subsystem(name='p%d' % i,
                               subsys=PlanePath2D(num_nodes=nn))

            self.add_subsystem(name='space%d' % i,
                               subsys=Space(num_nodes=nn, r_space=r_space))

        self.add_subsystem(name='pairwise',
                           subsys=Pairwise(n_traj=n_traj,
                                           ignored_pairs=pairs,
                                           num_nodes=nn))
Beispiel #3
0
from __future__ import absolute_import, print_function

import os
import sys
import torch
from torch.utils.data import DataLoader

from got10k.datasets import got10k
from pairwise import Pairwise
from siamfc import TrackerSiamFC

if __name__ == '__main__':
    # setup dataset
    root_dir = 'data/GOT-10k'
    seq_dataset = got10k(root_dir, subset='train')
    pair_dataset = Pairwise(seq_dataset)

    # setup data loader
    # cuda = torch.cuda.is_available()
    loader = DataLoader(pair_dataset,
                        batch_size=8,
                        shuffle=True,
                        drop_last=True,
                        num_workers=2)

    # setup tracker
    tracker = TrackerSiamFC()

    # path for saving checkpoints
    net_dir = 'pretrained/siamfc_new'
    if not os.path.exists(net_dir):
    datapath = '../data/%s.pkl.gz'%dataset
    result_path = './result/'
    sentence_modeling = 'CNN' # available: 'CBoW' 'LSTM' 'CNN'
    CNN_filter_length = 3
    LSTM_go_backwards = True
    
    flag_random_lookup_table = False
    
    pair_score = Pairwise(alpha = alpha,
             batch_size=batch_size,
             n_epochs=n_epochs,
             wordVecLen = wordVecLen,
             flag_dropout = flag_dropout,
             datapath=datapath,
             random_seed=random_seed,
             dropoutRates = dropoutRates,
             optimizer = optimizer,
             dispFreq = dispFreq,
             beam_size = beam_size,
             flag_random_lookup_table = flag_random_lookup_table,
             flag_toy_data = flag_toy_data,
             size_hidden_layer = size_hidden_layer,
             dataset = dataset,
             result_path = result_path,
             sentence_modeling = sentence_modeling,
             CNN_filter_length = CNN_filter_length,
             LSTM_go_backwards = LSTM_go_backwards
             )
    
    
Beispiel #5
0
from tqdm import tqdm
from got10k.datasets import *
from pairwise import Pairwise
from siamfc import TrackerSiamFC
from got10k.experiments import *

from config import config

if __name__ == '__main__':

    # setup dataset
    name = 'GOT-10k'
    assert name in ['VID', 'GOT-10k', 'All', 'OTB']
    if name == 'GOT-10k':
        seq_dataset = GOT10k(config.root_dir_for_GOT_10k, subset='train')
        pair_dataset = Pairwise(seq_dataset)
    elif name == 'VID':
        seq_dataset = ImageNetVID(config.root_dir_for_VID,
                                  subset=('train', 'val'))

    elif name == 'All':
        seq_got_dataset = GOT10k(config.root_dir_for_GOT_10k, subset='train')
        seq_vid_dataset = ImageNetVID(config.root_dir_for_VID,
                                      subset=('train', 'val'))
        pair_dataset = Pairwise(seq_got_dataset) + Pairwise(seq_vid_dataset)

    print(len(pair_dataset))

    # setup data loader
    cuda = torch.cuda.is_available()
    loader = DataLoader(pair_dataset,