def test_sha3_key(self):
        """Exercise solidity-like mappings, with the key being a sha3."""
        state = State(self.env)

        state_write = state.copy()
        # Arbitrary write input[1], at SHA3(input[0])
        state_write.storage_written = {
            Sha3(self.env.calldata.read(4, 32)): self.env.calldata.read(36, 32)
        }

        # Needs that: storage[SHA3(input[0])] == 43, made possible by the previous call
        state_selfdestruct = state.copy()
        state_selfdestruct.selfdestruct_to = self.env.calldata.read(36, 32)
        storage_input = claripy.BVS("storage[SHA3(input)]", 256)
        state_selfdestruct.storage_read = {
            Sha3(self.env.calldata.read(4, 32)): storage_input
        }
        state_selfdestruct.solver.add(storage_input == 0xDEADBEEF101010)

        storage = {
            55186156870478567193644641351382124067713781048612400765092754877653207859685: 0
        }
        self.assertTrue(
            self.check_states([state_write, state_selfdestruct], mock_storage=storage)
        )
        self.assertFalse(self.check_states([state_selfdestruct], mock_storage=storage))
        self.assertFalse(self.check_states([state_write]))
Beispiel #2
0
 def test_solver_copy(self):
     s = get_solver()
     in1 = claripy.BVS("in1", 256)
     s.add(Sha3(in1) == 0)
     self.assertFalse(s.satisfiable())
     s2 = s.branch()
     self.assertFalse(s2.satisfiable())
    def test_sha3_value2(self):
        """Same as above, but we need to pass the computed SHA3."""
        state = State(self.env)

        state_write = state.copy()
        state_write.storage_written = {
            utils.bvv(0): Sha3(self.env.calldata.read(4, 32))
        }

        state_selfdestruct = state.copy()
        state_selfdestruct.selfdestruct_to = self.env.calldata.read(36, 32)
        storage_input = claripy.BVS("storage[0]", 256)
        state_selfdestruct.storage_read = {utils.bvv(0): storage_input}
        state_selfdestruct.solver.add(
            storage_input == self.env.calldata.read(4, 32))
        state_selfdestruct.solver.add(storage_input != 0)

        storage = {0: 0}
        self.assertTrue(
            self.check_states([state_write, state_selfdestruct],
                              mock_storage=storage))
        self.assertFalse(
            self.check_states([state_selfdestruct], mock_storage=storage))
        self.assertFalse(self.check_states([state_write],
                                           mock_storage=storage))
Beispiel #4
0
 def test_cannot_combine(self):
     """If we didn't do a replace(), we cannot combine the same thing."""
     s = get_solver()
     a = claripy.BVS("a", 256)
     s.add(Sha3(a) == 8)
     s2 = s.branch()
     with self.assertRaises(ValueError):
         s.combine([s2])
Beispiel #5
0
    def test_solver_one_var(self):
        s = get_solver()
        in1 = claripy.BVS("in1", 256)

        self.assertFalse(s.satisfiable(extra_constraints=[Sha3(in1) == 42]))
        self.assertFalse(s.satisfiable(extra_constraints=[Sha3(in1) == 0]))
        self.assertTrue(s.satisfiable(extra_constraints=[Sha3(in1) == Sha3(bvv(42))]))
        self.assertTrue(s.satisfiable(extra_constraints=[Sha3(in1) == Sha3(bvv(0))]))
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1 + 1) + 2 == Sha3(bvv(0)) + 2])
        )
Beispiel #6
0
    def test_env_replace_merge_with_recursive_hash(self):
        old_env = env.Env(b"")
        new_env = old_env.clean_copy()

        old_state = State(old_env)
        old_state.solver.add(Sha3(Sha3(old_env.caller)) == Sha3(old_env.value))

        self.assertTrue(old_state.solver.satisfiable())
        self.assertFalse(
            old_state.solver.satisfiable(
                extra_constraints=[old_env.value == 5]))

        new_state = old_state.copy()
        new_state.replace(functools.partial(env.replace, old_env, new_env))
        new_state.replace(new_state.solver.regenerate_hash_symbols())

        self.assertTrue(new_state.solver.satisfiable())
        self.assertFalse(
            new_state.solver.satisfiable(
                extra_constraints=[new_env.value == 5]))
        self.assertTrue(
            new_state.solver.satisfiable(
                extra_constraints=[old_env.value == 5]))

        new_state.solver.add(old_env.value == new_env.value)
        self.assertTrue(new_state.solver.satisfiable())
        self.assertFalse(
            new_state.solver.satisfiable(
                extra_constraints=[new_env.value == 5]))
        self.assertFalse(
            new_state.solver.satisfiable(
                extra_constraints=[old_env.value == 5]))

        old_state.solver = old_state.solver.combine([new_state.solver])
        self.assertTrue(new_state.solver.satisfiable())
        self.assertEqual(len(old_state.solver.constraints), 3)
        self.assertEqual(len(old_state.solver.hashes),
                         len(new_state.solver.hashes) * 2)
    def test_sha3_value1(self):
        """Exercise comparison of two SHA3 (as values)."""
        state = State(self.env)

        state_write = state.copy()
        state_write.storage_written = {
            utils.bvv(0): Sha3(self.env.calldata.read(4, 32))
        }

        state_selfdestruct = state.copy()
        state_selfdestruct.selfdestruct_to = self.env.calldata.read(36, 32)
        storage_input = claripy.BVS("storage[0]", 256)
        state_selfdestruct.storage_read = {utils.bvv(0): storage_input}
        state_selfdestruct.solver.add(
            storage_input == Sha3(self.env.calldata.read(4, 32))
        )

        storage = {0: 0}
        self.assertTrue(
            self.check_states([state_write, state_selfdestruct], mock_storage=storage)
        )
        self.assertFalse(self.check_states([state_selfdestruct], mock_storage=storage))
        self.assertFalse(self.check_states([state_write], mock_storage=storage))
Beispiel #8
0
    def test_solver_recursive(self):
        s = get_solver()
        in1 = claripy.BVS("in1", 256)
        in2 = claripy.BVS("in2", 256)

        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(Sha3(in1)) == 0]))
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(Sha3(in1)) == Sha3(0)]))
        self.assertTrue(
            s.satisfiable(
                extra_constraints=[Sha3(Sha3(in1)) == Sha3(Sha3(0))]))

        s.add(Sha3(in1) == Sha3(in2))
        self.assertTrue(s.satisfiable())

        self.assertTrue(
            s.satisfiable(
                extra_constraints=[Sha3(Sha3(in1) + 1) == Sha3(Sha3(in2) +
                                                               1)]))

        s.add(Sha3(Sha3(in1) + 1) == Sha3(Sha3(in2) + 1))
        self.assertTrue(s.satisfiable())

        self.assertFalse(
            s.satisfiable(
                extra_constraints=[Sha3(Sha3(in1) + 2) == Sha3(Sha3(in2) +
                                                               1)]))
        self.assertFalse(
            s.satisfiable(
                extra_constraints=[Sha3(Sha3(in1)) + 1 == Sha3(Sha3(in2) +
                                                               1)]))

        s.add(Sha3(Sha3(in1)) + 3 == Sha3(Sha3(in2)) + 1)
        self.assertFalse(s.satisfiable())

        s_copy = s.branch()
        self.assertFalse(s_copy.satisfiable())
Beispiel #9
0
    def test_solver_arithmetics(self):
        s = get_solver()
        in1 = claripy.BVS("in1", 256)
        in2 = claripy.BVS("in2", 256)

        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 == Sha3(in2) + 1]))
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 == Sha3(in2) + 2]))
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 == Sha3(in2) + 2]))

        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1 + 1) == Sha3(in2 + 1)]))
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1 + 1) == Sha3(in2 - 1)]))
        self.assertFalse(
            s.satisfiable(
                extra_constraints=[Sha3(in1 + 1) + 42 == Sha3(in2 - 1)]))
Beispiel #10
0
    def test_solver_basic(self):
        s = get_solver()
        in1 = claripy.BVS("in1", 256)
        in2 = claripy.BVS("in2", 256)

        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) == Sha3(in2)]))
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) != Sha3(in2)]))
        # These next two always hold anyway.
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 != Sha3(in2)]))
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 == Sha3(in2)]))

        s.add(in1 == in2)
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) == Sha3(in2)]))
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(in1) != Sha3(in2)]))
        # These next two always hold anyway.
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 != Sha3(in2)]))
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 == Sha3(in2)]))

        s = get_solver()
        s.add(in1 != in2)
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(in1) == Sha3(in2)]))
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) != Sha3(in2)]))
        # These next two always hold anyway.
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 != Sha3(in2)]))
        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(in1) + 1 == Sha3(in2)]))
Beispiel #11
0
    def exec_branch(self, state):  # pylint:disable=invalid-name
        """Execute forward from a state, queuing new states if needed."""
        logger.debug("Constraints: %s", state.solver.constraints)

        def solution(variable):
            """Returns the solution. There must be one or we fail."""
            solutions = state.solver.eval(variable, 2)
            if len(solutions) > 1:
                raise MultipleSolutionsError(
                    "Multiple solutions for %s (%#x)" %
                    (variable, self.code[state.pc]))
            solution = solutions[0]
            return solution if isinstance(solution,
                                          numbers.Number) else solution.value

        self.code.pc = state.pc

        while True:
            if state.pc >= len(self.code):
                return True

            op = self.code[state.pc]
            self.code.pc += 1
            self.coverage[state.pc] += 1

            logger.debug("NEW STEP")
            logger.debug("Memory: %s", state.memory)
            logger.debug("Stack: %s", state.stack)
            logger.debug("PC: %i, %#x", state.pc, op)

            assert self.code.pc == state.pc + 1
            assert isinstance(op, numbers.Number)
            assert all(
                isinstance(i, claripy.ast.base.BV) for i in
                state.stack), "The stack musty only contains claripy BV's"

            # Trivial operations first
            if not self.code.is_valid_opcode(state.pc):
                raise utils.CodeError("Trying to execute PUSH data")
            elif op == 254:  # INVALID opcode
                raise utils.CodeError("designed INVALID opcode")
            elif op == opcode_values.JUMPDEST:
                pass
            elif op == opcode_values.ADD:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(s0 + s1)
            elif op == opcode_values.SUB:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(s0 - s1)
            elif op == opcode_values.MUL:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(s0 * s1)
            elif op == opcode_values.DIV:
                # We need to use claripy.LShR instead of a division if possible,
                # because the solver is bad dealing with divisions, better
                # with shifts. And we need shifts to handle the solidity ABI
                # for function selection.
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)  # pylint:disable=invalid-name
                except MultipleSolutionsError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0 / s1))
                else:
                    if s1 == 0:
                        state.stack_push(BVV_0)
                    elif s1 == 1:
                        state.stack_push(s0)
                    elif s1 & (s1 - 1) == 0:
                        exp = int(math.log(s1, 2))
                        state.stack_push(s0.LShR(exp))
                    else:
                        state.stack_push(s0 / s1)
            elif op == opcode_values.SDIV:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)
                except MultipleSolutionsError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0.SDiv(s1)))
                else:
                    state.stack_push(BVV_0 if s1 == 0 else s0.SDiv(s1))
            elif op == opcode_values.MOD:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)
                except MultipleSolutionsError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0 % s1))
                else:
                    state.stack_push(BVV_0 if s1 == 0 else s0 % s1)
            elif op == opcode_values.SMOD:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)
                except MultipleSolutionsError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0.SMod(s1)))
                else:
                    state.stack_push(BVV_0 if s1 == 0 else s0.SMod(s1))
            elif op == opcode_values.ADDMOD:
                s0, s1, s2 = state.stack_pop(), state.stack_pop(
                ), state.stack_pop()
                try:
                    s2 = solution(s2)
                except MultipleSolutionsError:
                    state.stack_push(claripy.If(s2 == 0, BVV_0,
                                                (s0 + s1) % s2))
                else:
                    state.stack_push(BVV_0 if s2 == 0 else (s0 + s1) % s2)
            elif op == opcode_values.MULMOD:
                s0, s1, s2 = state.stack_pop(), state.stack_pop(
                ), state.stack_pop()
                try:
                    s2 = solution(s2)
                except MultipleSolutionsError:
                    state.stack_push(claripy.If(s2 == 0, BVV_0,
                                                (s0 * s1) % s2))
                else:
                    state.stack_push(BVV_0 if s2 == 0 else (s0 * s1) % s2)
            elif op == opcode_values.SHL:
                shift, value = state.stack_pop(), state.stack_pop()
                state.stack_push(value << shift)
            elif op == opcode_values.SHR:
                shift, value = state.stack_pop(), state.stack_pop()
                state.stack_push(value.LShR(shift))
            elif op == opcode_values.SAR:
                shift, value = state.stack_pop(), state.stack_pop()
                state.stack_push(claripy.RotateRight(value, shift))
            elif op == opcode_values.EXP:
                base, exponent = state.stack_pop(), state.stack_pop()
                base_sol = solution(base)
                if base_sol == 2:
                    state.stack_push(1 << exponent)
                else:
                    try:
                        exponent_sol = solution(exponent)
                    except MultipleSolutionsError:
                        state.stack_push(exponent)  # restore stack
                        state.stack_push(base)
                        self.add_for_fuzzing(state, exponent,
                                             EXP_EXPONENT_FUZZ)
                        return False
                    else:
                        state.stack_push(
                            claripy.BVV(base_sol**exponent_sol, 256))
            elif op == opcode_values.LT:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(bool_to_bv(claripy.ULT(s0, s1)))
            elif op == opcode_values.GT:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(bool_to_bv(claripy.UGT(s0, s1)))
            elif op == opcode_values.SLT:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(bool_to_bv(claripy.SLT(s0, s1)))
            elif op == opcode_values.SGT:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(bool_to_bv(claripy.SGT(s0, s1)))
            elif op == opcode_values.SIGNEXTEND:
                # TODO: Use Claripy's SignExt that should do exactly that.
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                # s0 is the number of bits. s1 the number we want to extend.
                s0 = solution(s0)
                if s0 <= 31:
                    sign_bit = 1 << (s0 * 8 + 7)
                    state.stack_push(
                        claripy.If(
                            s1 & sign_bit == 0,
                            s1 & (sign_bit - 1),
                            s1 | ((1 << 256) - sign_bit),
                        ))
                else:
                    state.stack_push(s1)
            elif op == opcode_values.EQ:
                s0, s1 = state.stack_pop(), state.stack_pop()
                state.stack_push(bool_to_bv(s0 == s1))
            elif op == opcode_values.ISZERO:
                state.stack_push(bool_to_bv(state.stack_pop() == BVV_0))
            elif op == opcode_values.AND:
                s0, s1 = state.stack_pop(), state.stack_pop()
                state.stack_push(s0 & s1)
            elif op == opcode_values.OR:
                s0, s1 = state.stack_pop(), state.stack_pop()
                state.stack_push(s0 | s1)
            elif op == opcode_values.XOR:
                s0, s1 = state.stack_pop(), state.stack_pop()
                state.stack_push(s0 ^ s1)
            elif op == opcode_values.NOT:
                state.stack_push(~state.stack_pop())
            elif op == opcode_values.BYTE:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(
                    s1.LShR(claripy.If(s0 > 31, 32, 31 - s0) * 8) & 0xFF)

            elif op == opcode_values.PC:
                state.stack_push(bvv(state.pc))
            elif op == opcode_values.GAS:
                state.stack_push(state.env.gas)
            elif op == opcode_values.ADDRESS:
                state.stack_push(state.env.address)
            elif op == opcode_values.BALANCE:
                addr = solution(state.stack_pop())
                if addr != solution(state.env.address):
                    raise utils.InterpreterError(
                        state,
                        "Can only query balance of the current contract for now"
                    )
                state.stack_push(state.env.balance)
            elif op == opcode_values.ORIGIN:
                state.stack_push(state.env.origin)
            elif op == opcode_values.CALLER:
                state.stack_push(state.env.caller)
            elif op == opcode_values.CALLVALUE:
                state.stack_push(state.env.value)
            elif op == opcode_values.BLOCKHASH:
                block_num = state.stack_pop()
                if block_num not in state.env.block_hashes:
                    state.env.block_hashes[block_num] = claripy.BVS(
                        "blockhash[%s]" % block_num, 256)
                state.stack_push(state.env.block_hashes[block_num])
            elif op == opcode_values.TIMESTAMP:
                state.stack_push(state.env.block_timestamp)
            elif op == opcode_values.NUMBER:
                state.stack_push(state.env.block_number)
            elif op == opcode_values.COINBASE:
                state.stack_push(state.env.coinbase)
            elif op == opcode_values.DIFFICULTY:
                state.stack_push(state.env.difficulty)
            elif op == opcode_values.POP:
                state.stack_pop()
            elif op == opcode_values.JUMP:
                addr = solution(state.stack_pop())
                if addr >= len(self.code
                               ) or self.code[addr] != opcode_values.JUMPDEST:
                    raise utils.CodeError("Invalid jump (%i)" % addr)
                state.pc = addr
                self.add_branch(state)
                return False
            elif op == opcode_values.JUMPI:
                addr, condition = solution(
                    state.stack_pop()), state.stack_pop()
                state_false = state.copy()
                state.solver.add(condition != BVV_0)
                state_false.solver.add(condition == BVV_0)
                state_false.pc += 1
                self.add_branch(state_false)
                state.pc = addr
                if (state.pc >= len(self.code)
                        or self.code[state.pc] != opcode_values.JUMPDEST):
                    raise utils.CodeError("Invalid jump (%i)" % (state.pc - 1))
                self.add_branch(state)
                return False
            elif opcode_values.PUSH1 <= op <= opcode_values.PUSH32:
                pushnum = op - opcode_values.PUSH1 + 1
                raw_value = self.code.read(pushnum)
                state.pc += pushnum
                state.stack_push(
                    bvv(int.from_bytes(raw_value, byteorder="big")))
            elif opcode_values.DUP1 <= op <= opcode_values.DUP16:
                depth = op - opcode_values.DUP1 + 1
                state.stack_push(state.stack[-depth])
            elif opcode_values.SWAP1 <= op <= opcode_values.SWAP16:
                depth = op - opcode_values.SWAP1 + 1
                temp = state.stack[-depth - 1]
                state.stack[-depth - 1] = state.stack[-1]
                state.stack[-1] = temp
            elif opcode_values.LOG0 <= op <= opcode_values.LOG4:
                depth = op - opcode_values.LOG0
                mstart, msz = (state.stack_pop(), state.stack_pop())
                topics = [state.stack_pop() for x in range(depth)]
            elif op == opcode_values.SHA3:
                start, length = solution(state.stack_pop()), solution(
                    state.stack_pop())
                memory = state.memory.read(start, length)
                state.stack_push(Sha3(memory))
            elif op == opcode_values.STOP:
                return True
            elif op == opcode_values.RETURN:
                return True

            elif op == opcode_values.CALLDATALOAD:
                index = state.stack_pop()
                try:
                    index_sol = solution(index)
                except MultipleSolutionsError:
                    state.stack_push(index)  # restore the stack
                    self.add_for_fuzzing(state, index, CALLDATALOAD_INDEX_FUZZ)
                    return False
                state.stack_push(state.env.calldata.read(index_sol, 32))
            elif op == opcode_values.CALLDATASIZE:
                state.stack_push(state.env.calldata_size)
            elif op == opcode_values.CALLDATACOPY:
                old_state = state.copy()
                mstart, dstart, size = (
                    state.stack_pop(),
                    state.stack_pop(),
                    state.stack_pop(),
                )
                mstart, dstart = solution(mstart), solution(dstart)
                try:
                    size = solution(size)
                except MultipleSolutionsError:
                    self.add_for_fuzzing(old_state, size,
                                         CALLDATACOPY_SIZE_FUZZ)
                    return False
                state.memory.copy_from(state.env.calldata, mstart, dstart,
                                       size)
            elif op == opcode_values.CODESIZE:
                state.stack_push(bvv(len(self.code)))
            elif op == opcode_values.EXTCODESIZE:
                addr = state.stack_pop()
                if (addr == state.env.address).is_true():
                    state.stack_push(bvv(len(self.code)))
                else:
                    # TODO: Improve that... It's clearly not constraining enough.
                    state.stack_push(claripy.BVS("EXTCODESIZE[%s]" % addr,
                                                 256))

            elif op == opcode_values.EXTCODECOPY:
                old_state = state.copy()
                addr = state.stack_pop()
                mem_start = solution(state.stack_pop())
                code_start = solution(state.stack_pop())

                size = state.stack_pop()
                try:
                    size = solution(size)
                except MultipleSolutionsError:
                    # TODO: Fuzz.
                    # self.add_for_fuzzing(old_state, size, [])
                    # return False
                    raise
                state.memory.write(
                    mem_start,
                    size,
                    claripy.BVS("EXTCODE[%s from %s]" % (addr, code_start),
                                size * 8),
                )

            elif op == opcode_values.CODECOPY:
                mem_start, code_start, size = [
                    solution(state.stack_pop()) for _ in range(3)
                ]
                for i in range(size):
                    if code_start + i < len(state.env.code):
                        state.memory.write(
                            mem_start + i,
                            1,
                            claripy.BVV(state.env.code[code_start + i], 8),
                        )
                    else:
                        state.memory.write(mem_start + i, 1, claripy.BVV(0, 8))

            elif op == opcode_values.MLOAD:
                index = solution(state.stack_pop())
                state.stack_push(state.memory.read(index, 32))
            elif op == opcode_values.MSTORE:
                index, value = solution(state.stack_pop()), state.stack_pop()
                state.memory.write(index, 32, value)
            elif op == opcode_values.MSTORE8:
                index, value = solution(state.stack_pop()), state.stack_pop()
                state.memory.write(index, 1, value[7:0])
            elif op == opcode_values.MSIZE:
                state.stack_push(bvv(state.memory.size()))

            elif op == opcode_values.SLOAD:
                state.pc += 1
                key = state.stack_pop()
                for w_key, w_value in state.storage_written.items():
                    read_written = [w_key == key]
                    if state.solver.satisfiable(
                            extra_constraints=read_written):
                        new_state = state.copy()
                        new_state.solver.add(read_written)
                        new_state.stack_push(w_value)
                        self.add_branch(new_state)
                    state.solver.add(w_key != key)
                if state.solver.satisfiable():
                    assert key not in state.storage_written
                    if key not in state.storage_read:
                        state.storage_read[key] = claripy.BVS(
                            "storage[%s]" % key, 256)
                    state.stack_push(state.storage_read[key])
                    self.add_branch(state)
                return

            elif op == opcode_values.SSTORE:
                state.pc += 1
                key = state.stack_pop()
                value = state.stack_pop()
                for w_key, w_value in state.storage_written.items():
                    read_written = [w_key == key]
                    if state.solver.satisfiable(
                            extra_constraints=read_written):
                        new_state = state.copy()
                        new_state.solver.add(read_written)
                        new_state.storage_written[w_key] = value
                        self.add_branch(new_state)
                        state.solver.add(w_key != key)
                if state.solver.satisfiable():
                    assert key not in state.storage_written
                    state.storage_written[key] = value
                    self.add_branch(state)
                return

            elif op == opcode_values.CALL:
                state.pc += 1

                # pylint:disable=unused-variable
                gas, to_, value, meminstart, meminsz, memoutstart, memoutsz = (
                    state.stack_pop() for _ in range(7))

                # First possibility: the call fails
                # (always possible with a call stack big enough)
                state_fail = state.copy()
                state_fail.stack_push(BVV_0)
                self.add_branch(state_fail)

                # Second possibility: success.
                state.calls.append((memoutsz, memoutstart, meminsz, meminstart,
                                    value, to_, gas))

                memoutsz = solution(memoutsz)
                if memoutsz != 0:
                    # If we expect some output, let's constraint the call to
                    # be to a contract that we do control. Otherwise it could
                    # return anything...
                    state.solver.add(to_[159:0] == utils.DEFAULT_CALLER[159:0])

                    memoutstart = solution(memoutstart)
                    state.memory.write(
                        memoutstart,
                        memoutsz,
                        claripy.BVS("CALL_RETURN[%s]" % to_, memoutsz * 8),
                    )

                state.stack_push(BVV_1)
                self.add_branch(state)
                return False

            elif op == opcode_values.DELEGATECALL:
                state.pc += 1

                # pylint:disable=unused-variable
                gas, to_, meminstart, meminsz, memoutstart, memoutsz = (
                    state.stack_pop() for _ in range(6))

                # First possibility: the call fails
                # (always possible with a call stack big enough)
                state_fail = state.copy()
                state_fail.stack_push(BVV_0)
                self.add_branch(state_fail)

                # If the call is to a specific contract we don't control,
                # don't assume it could return anything, or even be successful.
                # So we say we need to be able to call an arbitrary contract.
                state.solver.add(to_[159:0] == utils.DEFAULT_CALLER[159:0])

                # Second possibility: success.
                state.calls.append(
                    (memoutsz, memoutstart, meminsz, meminstart, to_, gas))

                memoutsz = solution(memoutsz)
                if memoutsz != 0:
                    memoutstart = solution(memoutstart)
                    state.memory.write(
                        memoutstart,
                        memoutsz,
                        claripy.BVS("DELEGATECALL_RETURN[%s]" % to_,
                                    memoutsz * 8),
                    )

                state.stack_push(BVV_1)
                self.add_branch(state)
                return False

            elif op == opcode_values.RETURNDATASIZE:
                state.stack_push(claripy.BVS("RETURNDATASIZE", 256))

            elif op == opcode_values.RETURNDATACOPY:
                old_state = state.copy()
                mem_start_position = solution(state.stack_pop())
                returndata_start_position = solution(state.stack_pop())

                size = state.stack_pop()
                try:
                    size = solution(size)
                except MultipleSolutionsError:
                    self.add_for_fuzzing(old_state, size,
                                         RETURNDATACOPY_SIZE_FUZZ)
                    return False

                state.memory.write(mem_start_position, size,
                                   claripy.BVS("RETURNDATACOPY", size * 8))

            elif op == opcode_values.SELFDESTRUCT:
                state.selfdestruct_to = state.stack[-1]
                return True

            elif op == opcode_values.REVERT:
                return False

            else:
                raise utils.InterpreterError(state, "Unknown opcode %#x" % op)

            state.pc += 1
Beispiel #12
0
 def test_sha3_equality(self):
     a = claripy.BVV(1, 256)
     b = claripy.BVV(2, 256)
     self.assertEqual(Sha3(a), Sha3(claripy.BVV(1, 256)))
     self.assertNotEqual(Sha3(a), Sha3(b))
Beispiel #13
0
    def test_solver_recursive_unbalanced(self):
        s = get_solver()
        in1 = claripy.BVS("in1", 256)
        in2 = claripy.BVS("in2", 256)

        self.assertFalse(
            s.satisfiable(extra_constraints=[Sha3(Sha3(in1)) == Sha3(bvv(0))])
        )
        self.assertTrue(s.satisfiable(extra_constraints=[Sha3(Sha3(in1)) == Sha3(in2)]))
        logging.debug("here")
        self.assertTrue(s.satisfiable(extra_constraints=[Sha3(in1) == Sha3(Sha3(in2))]))

        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(Sha3(Sha3(in1))) == Sha3(in2)])
        )
        self.assertTrue(
            s.satisfiable(extra_constraints=[Sha3(in1) == Sha3(Sha3(Sha3(in2)))])
        )
Beispiel #14
0
    def test_solver_three_symbols(self):
        s = get_solver()
        in1 = claripy.BVS("in1", 256)
        in2 = claripy.BVS("in2", 256)
        in3 = claripy.BVS("in2", 256)

        self.assertFalse(
            s.satisfiable(
                extra_constraints=[Sha3(in1) == Sha3(Sha3(in3)) + Sha3(Sha3(Sha3(in2)))]
            )
        )
        self.assertTrue(
            s.satisfiable(
                extra_constraints=[in1 == Sha3(Sha3(in3)) + Sha3(Sha3(Sha3(in2)))]
            )
        )
Beispiel #15
0
    def exec_branch(self, state):  # pylint:disable=invalid-name
        """Execute forward from a state, queuing new states if needed."""
        logger.debug("Constraints: %s", state.solver.constraints)

        def solution(variable):
            """Returns the solution. There must be one or we fail."""
            solutions = state.solver.eval(variable, 2)
            if len(solutions) > 1:
                raise ValueError("Ambiguous solution for %s (%s)" %
                                 (variable, self.code[state.pc]))
            solution = solutions[0]
            return solution if isinstance(solution,
                                          numbers.Number) else solution.value

        state.score += 1
        self.code.pc = state.pc

        while True:
            if state.pc >= len(self.code):
                return True

            op = self.code.next()
            self.coverage[state.pc] += 1

            logger.debug("NEW STEP")
            logger.debug("Memory: %s", state.memory)
            logger.debug("Stack: %s", state.stack)
            logger.debug("PC: %i, %s", state.pc, op)

            assert self.code.pc == state.pc + 1
            assert isinstance(op, numbers.Number)
            assert all(
                hasattr(i, "symbolic") for i in
                state.stack), "The stack musty only contains claripy BV's"

            # Trivial operations first
            if not self.code.is_valid_opcode(state.pc):
                raise utils.CodeError("Trying to execute PUSH data")
            elif op == 254:  # INVALID opcode
                raise utils.CodeError("designed INVALID opcode")
            elif op == opcode_values.JUMPDEST:
                pass
            elif op == opcode_values.ADD:
                s0, s1 = (
                    not_bool(state.stack_pop()),
                    not_bool(state.stack_pop()),
                )  # pylint:disable=invalid-name
                state.stack_push(s0 + s1)
            elif op == opcode_values.SUB:
                s0, s1 = (
                    not_bool(state.stack_pop()),
                    not_bool(state.stack_pop()),
                )  # pylint:disable=invalid-name
                state.stack_push(s0 - s1)
            elif op == opcode_values.MUL:
                s0, s1 = (
                    not_bool(state.stack_pop()),
                    not_bool(state.stack_pop()),
                )  # pylint:disable=invalid-name
                state.stack_push(s0 * s1)
            elif op == opcode_values.DIV:
                # We need to use claripy.LShR instead of a division if possible,
                # because the solver is bad dealing with divisions, better
                # with shifts. And we need shifts to handle the solidity ABI
                # for function selection.
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)  # pylint:disable=invalid-name
                except ValueError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0 / s1))
                else:
                    if s1 == 0:
                        state.stack_push(BVV_0)
                    elif s1 == 1:
                        state.stack_push(s0)
                    elif s1 & (s1 - 1) == 0:
                        exp = int(math.log(s1, 2))
                        state.stack_push(s0.LShR(exp))
                    else:
                        state.stack_push(s0 / s1)
            elif op == opcode_values.SDIV:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)
                except ValueError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0.SDiv(s1)))
                else:
                    state.stack_push(BVV_0 if s1 == 0 else s0.SDiv(s1))
            elif op == opcode_values.MOD:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)
                except ValueError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0 % s1))
                else:
                    state.stack_push(BVV_0 if s1 == 0 else s0 % s1)
            elif op == opcode_values.SMOD:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                try:
                    s1 = solution(s1)
                except ValueError:
                    state.stack_push(claripy.If(s1 == 0, BVV_0, s0.SMod(s1)))
                else:
                    state.stack_push(BVV_0 if s1 == 0 else s0.SMod(s1))
            elif op == opcode_values.ADDMOD:
                s0, s1, s2 = state.stack_pop(), state.stack_pop(
                ), state.stack_pop()
                try:
                    s2 = solution(s2)
                except ValueError:
                    state.stack_push(claripy.If(s2 == 0, BVV_0,
                                                (s0 + s1) % s2))
                else:
                    state.stack_push(BVV_0 if s2 == 0 else (s0 + s1) % s2)
            elif op == opcode_values.MULMOD:
                s0, s1, s2 = state.stack_pop(), state.stack_pop(
                ), state.stack_pop()
                try:
                    s2 = solution(s2)
                except ValueError:
                    state.stack_push(claripy.If(s2 == 0, BVV_0,
                                                (s0 * s1) % s2))
                else:
                    state.stack_push(BVV_0 if s2 == 0 else (s0 * s1) % s2)
            elif op == opcode_values.EXP:
                base, exponent = solution(state.stack_pop()), state.stack_pop()
                if base == 2:
                    state.stack_push(1 << exponent)
                else:
                    exponent = solution(exponent)
                    state.stack_push(claripy.BVV(base**exponent, 256))
            elif op == opcode_values.LT:
                s0, s1 = (
                    not_bool(state.stack_pop()),
                    not_bool(state.stack_pop()),
                )  # pylint:disable=invalid-name
                state.stack_push(claripy.ULT(s0, s1))
            elif op == opcode_values.GT:
                s0, s1 = (
                    not_bool(state.stack_pop()),
                    not_bool(state.stack_pop()),
                )  # pylint:disable=invalid-name
                state.stack_push(claripy.UGT(s0, s1))
            elif op == opcode_values.SLT:
                s0, s1 = (
                    not_bool(state.stack_pop()),
                    not_bool(state.stack_pop()),
                )  # pylint:disable=invalid-name
                state.stack_push(claripy.SLT(s0, s1))
            elif op == opcode_values.SGT:
                s0, s1 = (
                    not_bool(state.stack_pop()),
                    not_bool(state.stack_pop()),
                )  # pylint:disable=invalid-name
                state.stack_push(claripy.SGT(s0, s1))
            elif op == opcode_values.SIGNEXTEND:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                # s0 is the number of bits. s1 the number we want to extend.
                s0 = solution(s0)
                if s0 <= 31:
                    sign_bit = 1 << (s0 * 8 + 7)
                    state.stack_push(
                        claripy.If(
                            s1 & sign_bit == 0,
                            s1 & (sign_bit - 1),
                            s1 | ((1 << 256) - sign_bit),
                        ))
                else:
                    state.stack_push(s1)
            elif op == opcode_values.EQ:
                s0, s1 = state.stack_pop(), state.stack_pop()
                if isinstance(s0, claripy.ast.Bool) and isinstance(
                        s1, claripy.ast.Bool):
                    state.stack_push(s0 == s1)
                else:
                    state.stack_push(not_bool(s0) == not_bool(s1))
            elif op == opcode_values.ISZERO:
                condition = state.stack_pop()
                if isinstance(condition, claripy.ast.Bool):
                    state.stack_push(claripy.Not(condition))
                else:
                    state.stack_push(condition == BVV_0)
            elif op == opcode_values.AND:
                s0, s1 = make_consistent(state.stack_pop(), state.stack_pop())
                if isinstance(s0, claripy.ast.Bool) and isinstance(
                        s1, claripy.ast.Bool):
                    state.stack_push(s0 and s1)
                else:
                    state.stack_push(s0 & s1)
            elif op == opcode_values.OR:
                s0, s1 = make_consistent(state.stack_pop(), state.stack_pop())
                if isinstance(s0, claripy.ast.Bool) and isinstance(
                        s1, claripy.ast.Bool):
                    state.stack_push(s0 or s1)
                else:
                    state.stack_push(s0 | s1)
            elif op == opcode_values.XOR:
                s0, s1 = make_consistent(state.stack_pop(), state.stack_pop())
                state.stack_push(s0 ^ s1)
            elif op == opcode_values.NOT:
                state.stack_push(~state.stack_pop())
            elif op == opcode_values.BYTE:
                s0, s1 = (
                    state.stack_pop(),
                    state.stack_pop(),
                )  # pylint:disable=invalid-name
                state.stack_push(
                    s1.LShR(claripy.If(s0 > 31, 32, 31 - s0) * 8) & 0xFF)

            elif op == opcode_values.PC:
                state.stack_push(bvv(state.pc))
            elif op == opcode_values.GAS:
                state.stack_push(state.env.gas)
            elif op == opcode_values.ADDRESS:
                state.stack_push(state.env.address)
            elif op == opcode_values.BALANCE:
                addr = solution(state.stack_pop())
                if addr != solution(state.env.address):
                    raise utils.InterpreterError(
                        state,
                        "Can only query balance of the current contract for now"
                    )
                state.stack_push(state.env.balance)
            elif op == opcode_values.ORIGIN:
                state.stack_push(state.env.origin)
            elif op == opcode_values.CALLER:
                state.stack_push(state.env.caller)
            elif op == opcode_values.CALLVALUE:
                state.stack_push(state.env.value)
            elif op == opcode_values.BLOCKHASH:
                block_num = state.stack_pop()
                if block_num not in state.env.block_hashes:
                    state.env.block_hashes[block_num] = claripy.BVS(
                        "blockhash[%s]" % block_num, 256)
                state.stack_push(state.env.block_hashes[block_num])
            elif op == opcode_values.TIMESTAMP:
                state.stack_push(state.env.block_timestamp)
            elif op == opcode_values.NUMBER:
                state.stack_push(state.env.block_number)
            elif op == opcode_values.COINBASE:
                state.stack_push(state.env.coinbase)
            elif op == opcode_values.DIFFICULTY:
                state.stack_push(state.env.difficulty)
            elif op == opcode_values.POP:
                state.stack_pop()
            elif op == opcode_values.JUMP:
                addr = solution(state.stack_pop())
                if addr >= len(self.code
                               ) or self.code[addr] != opcode_values.JUMPDEST:
                    raise utils.CodeError("Invalid jump (%i)" % addr)
                state.pc = addr
                self.add_branch(state)
                return False
            elif op == opcode_values.JUMPI:
                addr, condition = solution(
                    state.stack_pop()), state.stack_pop()
                state_false = state.copy()
                if isinstance(condition, claripy.ast.Bool):
                    state.solver.add(condition)
                    state_false.solver.add(claripy.Not(condition))
                else:
                    state.solver.add(condition != 0)
                    state_false.solver.add(condition == 0)
                state_false.pc += 1
                self.add_branch(state_false)
                state.pc = addr
                if (state.pc >= len(self.code)
                        or self.code[state.pc] != opcode_values.JUMPDEST):
                    raise utils.CodeError("Invalid jump (%i)" % (state.pc - 1))
                self.add_branch(state)
                return False
            elif opcode_values.PUSH1 <= op <= opcode_values.PUSH32:
                pushnum = op - opcode_values.PUSH1 + 1
                raw_value = self.code.read(pushnum)
                state.pc += pushnum
                state.stack_push(
                    bvv(int.from_bytes(raw_value, byteorder="big")))
            elif opcode_values.DUP1 <= op <= opcode_values.DUP16:
                depth = op - opcode_values.DUP1 + 1
                state.stack_push(state.stack[-depth])
            elif opcode_values.SWAP1 <= op <= opcode_values.SWAP16:
                depth = op - opcode_values.SWAP1 + 1
                temp = state.stack[-depth - 1]
                state.stack[-depth - 1] = state.stack[-1]
                state.stack[-1] = temp
            elif opcode_values.LOG0 <= op <= opcode_values.LOG4:
                depth = op - opcode_values.LOG0
                mstart, msz = (state.stack_pop(), state.stack_pop())
                topics = [state.stack_pop() for x in range(depth)]
            elif op == opcode_values.SHA3:
                start, length = solution(state.stack_pop()), solution(
                    state.stack_pop())
                memory = state.memory.read(start, length)
                state.stack_push(Sha3(memory))
            elif op == opcode_values.STOP:
                return True
            elif op == opcode_values.RETURN:
                return True

            elif op == opcode_values.CALLDATALOAD:
                indexes = state.stack_pop()
                try:
                    index = solution(indexes)
                except ValueError:  # Multiple solutions, let's fuzz.
                    state.stack_push(indexes)  # restore the stack
                    self.add_for_fuzzing(state, indexes, CALLDATASIZE_FUZZ)
                    return False
                state.solver.add(state.env.calldata_size >= index + 32)
                state.stack_push(state.env.calldata.read(index, 32))
            elif op == opcode_values.CALLDATASIZE:
                state.stack_push(state.env.calldata_size)
            elif op == opcode_values.CALLDATACOPY:
                old_state = state.copy()
                mstart, dstart, size = (
                    state.stack_pop(),
                    state.stack_pop(),
                    state.stack_pop(),
                )
                mstart, dstart = solution(mstart), solution(dstart)
                try:
                    size = solution(size)
                except ValueError:
                    self.add_for_fuzzing(old_state, size, CALLDATASIZE_FUZZ)
                    return False
                state.memory.copy_from(state.env.calldata, mstart, dstart,
                                       size)
                state.solver.add(state.env.calldata_size >= dstart + size)
            elif op == opcode_values.CODESIZE:
                state.stack_push(bvv(len(self.code)))
            elif op == opcode_values.EXTCODESIZE:
                addr = state.stack_pop()
                if (addr == state.env.address).is_true():
                    state.stack_push(bvv(len(self.code)))
                else:
                    # TODO: Improve that... It's clearly not constraining enough.
                    state.stack_push(claripy.BVS("EXTCODESIZE[%s]" % addr,
                                                 256))
            elif op == opcode_values.CODECOPY:
                mem_start, code_start, size = [
                    solution(state.stack_pop()) for _ in range(3)
                ]
                for i in range(size):
                    if code_start + i < len(state.env.code):
                        state.memory.write(
                            mem_start + i,
                            1,
                            claripy.BVV(state.env.code[code_start + i], 8),
                        )
                    else:
                        state.memory.write(mem_start + i, 1, claripy.BVV(0, 8))

            elif op == opcode_values.MLOAD:
                index = solution(state.stack_pop())
                state.stack_push(state.memory.read(index, 32))
            elif op == opcode_values.MSTORE:
                index, value = solution(state.stack_pop()), not_bool(
                    state.stack_pop())
                state.memory.write(index, 32, value)
            elif op == opcode_values.MSTORE8:
                index, value = solution(state.stack_pop()), not_bool(
                    state.stack_pop())
                state.memory.write(index, 1, value[7:0])
            elif op == opcode_values.MSIZE:
                state.stack_push(bvv(state.memory.size()))
            elif op == opcode_values.SLOAD:
                # TODO: This is inaccurate, because the storage can change
                # in a single transaction.
                # See commit d98cab834f8f359f01ef805256d179f5529ebe30.
                key = state.stack_pop()
                if key in state.storage_written:
                    state.stack_push(state.storage_written[key])
                else:
                    if key not in state.storage_read:
                        state.storage_read[key] = claripy.BVS(
                            "storage[%s]" % key, 256)
                    state.stack_push(state.storage_read[key])
            elif op == opcode_values.SSTORE:
                # TODO: This is inaccurate, because the storage can change
                # in a single transaction.
                # See commit d98cab834f8f359f01ef805256d179f5529ebe30.
                key = state.stack_pop()
                value = state.stack_pop()
                state.storage_written[key] = value

            elif op == opcode_values.CALL:
                state.pc += 1

                # First possibility: the call fails
                # (always possible with a call stack big enough)
                state_fail = state.copy()
                state_fail.stack_push(claripy.BoolV(False))
                self.add_branch(state_fail)

                # Second possibility: success.
                state.calls.append(state.stack[-7:])

                # pylint:disable=unused-variable
                gas, to_, value, meminstart, meminsz, memoutstart, memoutsz = (
                    state.stack_pop() for _ in range(7))

                if solution(memoutsz) != 0:
                    raise utils.InterpreterError(state,
                                                 "CALL seems to return data")
                if solution(meminsz) != 0:
                    raise utils.InterpreterError(state,
                                                 "CALL seems to take data")

                state.stack_push(claripy.BoolV(True))
                self.add_branch(state)
                return False

            elif op == opcode_values.SELFDESTRUCT:
                state.selfdestruct_to = state.stack[-1]
                return True

            elif op == opcode_values.REVERT:
                return False
            else:
                raise utils.InterpreterError(state, "Unknown opcode %s" % op)

            state.pc += 1
Beispiel #16
0
 def test_sha3_equality_different_length(self):
     a = claripy.BVV(1, 8)
     s = get_solver()
     s.add(Sha3(a) == Sha3(claripy.BVV(1, 256)))
     self.assertFalse(s.satisfiable())
Beispiel #17
0
 def test_sha3_unequality(self):
     a = claripy.BVV(1, 256)
     s = get_solver()
     s.add(Sha3(a) != Sha3(claripy.BVV(1, 256)))
     self.assertFalse(s.satisfiable())