Beispiel #1
0
def _run_pf_algorithm(ppci, options, **kwargs):
    algorithm = options["algorithm"]
    ac = options["ac"]

    if ac:
        _, pv, pq = bustypes(ppci["bus"], ppci["gen"])
        # ----- run the powerflow -----
        if pq.shape[0] == 0 and pv.shape[
                0] == 0 and not options['distributed_slack']:
            # ommission not correct if distributed slack is used
            result = _bypass_pf_and_set_results(ppci, options)
        elif algorithm == 'bfsw':  # forward/backward sweep power flow algorithm
            result = _run_bfswpf(ppci, options, **kwargs)[0]
        elif algorithm in ['nr', 'iwamoto_nr']:
            result = _run_newton_raphson_pf(ppci, options)
        elif algorithm in ['fdbx', 'fdxb',
                           'gs']:  # algorithms existing within pypower
            result = _runpf_pypower(ppci, options, **kwargs)[0]
        else:
            raise AlgorithmUnknown(
                "Algorithm {0} is unknown!".format(algorithm))
    else:
        result = _run_dc_pf(ppci)

    return result
def _get_pf_variables_from_ppci(ppci):
    """
    Used for getting values for pfsoln function in one convinient function
    """
    # default arguments
    if ppci is None:
        ValueError('ppci is empty')
    # get data for calc
    base_mva, bus, gen, branch = \
        ppci["baseMVA"], ppci["bus"], ppci["gen"], ppci["branch"]
    # get bus index lists of each type of bus
    ref, pv, pq = bustypes(bus, gen)
    return base_mva, bus, gen, branch, ref, pv, pq
Beispiel #3
0
def _get_pf_variables_from_ppci(ppci):
    """
    Used for getting values for pfsoln function in one convinient function
    """
    # default arguments
    if ppci is None:
        ValueError('ppci is empty')
    # get data for calc
    base_mva, bus, gen, branch = \
        ppci["baseMVA"], ppci["bus"], ppci["gen"], ppci["branch"]
    # get bus index lists of each type of bus
    ref, pv, pq = bustypes(bus, gen)
    # generator info
    on = find(gen[:, GEN_STATUS] > 0)  # which generators are on?
    gbus = gen[on, GEN_BUS].astype(int)  # what buses are they at?
    # initial state
    v0 = bus[:, VM] * exp(1j * pi / 180 * bus[:, VA])
    v0[gbus] = gen[on, VG] / abs(v0[gbus]) * v0[gbus]
    ref_gens = ppci["internal"]["ref_gens"]
    return base_mva, bus, gen, branch, ref, pv, pq, on, gbus, v0, ref_gens
Beispiel #4
0
def _get_pf_variables_from_ppci(ppci):
    ## default arguments
    if ppci is None:
        ValueError('ppci is empty')
    # ppopt = ppoption(ppopt)

    # get data for calc
    baseMVA, bus, gen, branch = \
        ppci["baseMVA"], ppci["bus"], ppci["gen"], ppci["branch"]

    ## get bus index lists of each type of bus
    ref, pv, pq = bustypes(bus, gen)

    ## generator info
    on = find(gen[:, GEN_STATUS] > 0)  ## which generators are on?
    gbus = gen[on, GEN_BUS].astype(int)  ## what buses are they at?

    ## initial state
    # V0    = ones(bus.shape[0])            ## flat start
    V0 = bus[:, VM] * exp(1j * pi / 180. * bus[:, VA])
    V0[gbus] = gen[on, VG] / abs(V0[gbus]) * V0[gbus]

    ref_gens = ppci["internal"]["ref_gens"]
    return baseMVA, bus, gen, branch, ref, pv, pq, on, gbus, V0, ref_gens
Beispiel #5
0
def _run_ac_pf_with_qlims_enforced(ppci, options):
    baseMVA, bus, gen, branch, ref, pv, pq, on, _, V0, ref_gens = _get_pf_variables_from_ppci(ppci)

    qlim = options["enforce_q_lims"]
    limited = []  # list of indices of gens @ Q lims
    fixedQg = zeros(gen.shape[0])  # Qg of gens at Q limits

    while True:
        ppci, success, iterations = _run_ac_pf_without_qlims_enforced(ppci, options)
        bus, gen, branch = ppci_to_pfsoln(ppci, options)

        # find gens with violated Q constraints
        gen_status = gen[:, GEN_STATUS] > 0
        qg_max_lim = gen[:, QG] > gen[:, QMAX]
        qg_min_lim = gen[:, QG] < gen[:, QMIN]

        mx = setdiff1d(find(gen_status & qg_max_lim), ref_gens)
        mn = setdiff1d(find(gen_status & qg_min_lim), ref_gens)

        if len(mx) > 0 or len(mn) > 0:  # we have some Q limit violations
            # one at a time?
            if qlim == 2:  # fix largest violation, ignore the rest
                k = argmax(r_[gen[mx, QG] - gen[mx, QMAX],
                              gen[mn, QMIN] - gen[mn, QG]])
                if k > len(mx):
                    mn = mn[k - len(mx)]
                    mx = []
                else:
                    mx = mx[k]
                    mn = []

            # save corresponding limit values
            fixedQg[mx] = gen[mx, QMAX]
            fixedQg[mn] = gen[mn, QMIN]
            mx = r_[mx, mn].astype(int)

            # convert to PQ bus
            gen[mx, QG] = fixedQg[mx]  # set Qg to binding
            for i in range(len(mx)):  # [one at a time, since they may be at same bus]
                gen[mx[i], GEN_STATUS] = 0  # temporarily turn off gen,
                bi = gen[mx[i], GEN_BUS].astype(int)  # adjust load accordingly,
                bus[bi, [PD, QD]] = (bus[bi, [PD, QD]] - gen[mx[i], [PG, QG]])

            #            if len(ref) > 1 and any(bus[gen[mx, GEN_BUS].astype(int), BUS_TYPE] == REF):
            #                raise ValueError('Sorry, pandapower cannot enforce Q '
            #                                 'limits for slack buses in systems '
            #                                 'with multiple slacks.')

            changed_gens = gen[mx, GEN_BUS].astype(int)
            bus[setdiff1d(changed_gens, ref), BUS_TYPE] = PQ  # & set bus type to PQ

            # update bus index lists of each type of bus
            ref, pv, pq = bustypes(bus, gen)

            limited = r_[limited, mx].astype(int)
        else:
            break  # no more generator Q limits violated

    if len(limited) > 0:
        # restore injections from limited gens [those at Q limits]
        gen[limited, QG] = fixedQg[limited]  # restore Qg value,
        for i in range(len(limited)):  # [one at a time, since they may be at same bus]
            bi = gen[limited[i], GEN_BUS].astype(int)  # re-adjust load,
            bus[bi, [PD, QD]] = bus[bi, [PD, QD]] + gen[limited[i], [PG, QG]]
            gen[limited[i], GEN_STATUS] = 1  # and turn gen back on

    return ppci, success, iterations, bus, gen, branch
Beispiel #6
0
def _bfswpf(DLF, bus, gen, branch, baseMVA, Ybus, Sbus, V0, ref, pv, pq, buses_ordered_bfs_nets,
            options, **kwargs):
    """
    distribution power flow solution according to [1]
    :param DLF: direct-Load-Flow matrix which relates bus current injections to voltage drops from the root bus

    :param bus: buses martix
    :param gen: generators matrix
    :param branch: branches matrix
    :param baseMVA:
    :param Ybus: bus admittance matrix
    :param Sbus: vector of power injections
    :param V0: initial voltage state vector
    :param ref: reference bus index
    :param pv: PV buses indices
    :param pq: PQ buses indices
    :param buses_ordered_bfs_nets: buses ordered according to breadth-first search

    :return: power flow result
    """
    enforce_q_lims = options["enforce_q_lims"]
    tolerance_mva = options["tolerance_mva"]
    max_iteration = options["max_iteration"]
    voltage_depend_loads = options["voltage_depend_loads"]
    # setting options
    max_it = max_iteration  # maximum iterations
    verbose = kwargs["VERBOSE"]  # verbose is set in run._runpppf() #

    # tolerance for the inner loop for PV nodes
    if 'tolerance_mva_pv' in kwargs:
        tol_mva_inner = kwargs['tolerance_mva_pv']
    else:
        tol_mva_inner = 1.e-2

    if 'max_iter_pv' in kwargs:
        max_iter_pv = kwargs['max_iter_pv']
    else:
        max_iter_pv = 20

    nobus = bus.shape[0]
    ngen = gen.shape[0]

    mask_root = ~ (bus[:, BUS_TYPE] == 3)  # mask for eliminating root bus
    norefs = len(ref)

    Ysh = _makeYsh_bfsw(bus, branch, baseMVA)

    # detect generators on PV buses which have status ON
    gen_pv = np.in1d(gen[:, GEN_BUS], pv) & (gen[:, GEN_STATUS] > 0)
    qg_lim = np.zeros(ngen, dtype=bool)  # initialize generators which violated Q limits

    Iinj = np.conj(Sbus / V0) - Ysh * V0   # Initial current injections

    # initiate reference voltage vector
    V_ref = np.ones(nobus, dtype=complex)
    for neti, buses_ordered_bfs in enumerate(buses_ordered_bfs_nets):
        V_ref[buses_ordered_bfs] *= V0[ref[neti]]
    V = V0.copy()

    n_iter = 0
    converged = 0
    if verbose:
        print(' -- AC Power Flow (Backward/Forward sweep)\n')

    while not converged and n_iter < max_it:
        n_iter_inner = 0
        n_iter += 1

        deltaV = DLF * Iinj[mask_root]
        V[mask_root] = V_ref[mask_root] + deltaV

        # ##
        # inner loop for considering PV buses
        # TODO improve PV buses inner loop
        inner_loop_converged = False
        while not inner_loop_converged and len(pv) > 0:

            pvi = pv - norefs  # internal PV buses indices, assuming reference node is always 0

            Vmis = (np.abs(gen[gen_pv, VG])) ** 2 - (np.abs(V[pv])) ** 2
            # TODO improve getting values from sparse DLF matrix - DLF[pvi, pvi] is unefficient
            dQ = (Vmis / (2 * DLF[pvi, pvi].A1.imag)).flatten()

            gen[gen_pv, QG] += dQ

            if enforce_q_lims:  # check Q violation limits
                ## find gens with violated Q constraints
                qg_max_lim = (gen[:, QG] > gen[:, QMAX]) & gen_pv
                qg_min_lim = (gen[:, QG] < gen[:, QMIN]) & gen_pv

                if qg_min_lim.any():
                    gen[qg_min_lim, QG] = gen[qg_min_lim, QMIN]
                    bus[gen[qg_min_lim, GEN_BUS].astype(int), BUS_TYPE] = 1  # convert to PQ bus

                if qg_max_lim.any():
                    gen[qg_max_lim, QG] = gen[qg_max_lim, QMAX]
                    bus[gen[qg_max_lim, GEN_BUS].astype(int), BUS_TYPE] = 1  # convert to PQ bus

                # TODO: correct: once all the PV buses are converted to PQ buses, conversion back to PV is not possible
                qg_lim_new = qg_min_lim | qg_max_lim
                if qg_lim_new.any():
                    pq2pv = (qg_lim != qg_lim_new) & qg_lim
                    # convert PQ to PV bus
                    if pq2pv.any():
                        bus[gen[qg_max_lim, GEN_BUS].astype(int), BUS_TYPE] = 2  # convert to PV bus

                    qg_lim = qg_lim_new.copy()
                    ref, pv, pq = bustypes(bus, gen)

            # avoid calling makeSbus, update only Sbus for pv nodes
            Sbus = (makeSbus(baseMVA, bus, gen, vm=abs(V))
                    if voltage_depend_loads else
                    makeSbus(baseMVA, bus, gen))
            Iinj = np.conj(Sbus / V) - Ysh * V
            deltaV = DLF * Iinj[mask_root]
            V[mask_root] = V_ref[mask_root] + deltaV

            if n_iter_inner > max_iter_pv:
                raise LoadflowNotConverged(" FBSW Power Flow did not converge - inner iterations for PV nodes "
                                           "reached maximum value of {0}!".format(max_iter_pv))

            n_iter_inner += 1

            if np.all(np.abs(dQ) < tol_mva_inner):  # inner loop termination criterion
                inner_loop_converged = True

        # testing termination criterion -
        if voltage_depend_loads:
            Sbus = makeSbus(baseMVA, bus, gen, vm=abs(V))
        F = _evaluate_Fx(Ybus, V, Sbus, pv, pq)
        # check tolerance
        converged = _check_for_convergence(F, tolerance_mva)

        if converged and verbose:
            print("\nFwd-back sweep power flow converged in "
                  "{0} iterations.\n".format(n_iter))

        # updating injected currents
        Iinj = np.conj(Sbus / V) - Ysh * V

    return V, converged
Beispiel #7
0
def _run_ac_pf_with_qlims_enforced(ppci, recycle, makeYbus, ppopt):
    baseMVA, bus, gen, branch, ref, pv, pq, on, gbus, V0, _ = _get_pf_variables_from_ppci(
        ppci)

    qlim = ppopt["ENFORCE_Q_LIMS"]
    limited = []  ## list of indices of gens @ Q lims
    fixedQg = zeros(gen.shape[0])  ## Qg of gens at Q limits
    it = 0
    while True:
        ppci, success, bus, gen, branch, it_inner = _run_ac_pf_without_qlims_enforced(
            ppci, recycle, makeYbus, ppopt)
        it += it_inner

        ## find gens with violated Q constraints
        gen_status = gen[:, GEN_STATUS] > 0
        qg_max_lim = gen[:, QG] > gen[:, QMAX]
        qg_min_lim = gen[:, QG] < gen[:, QMIN]

        non_refs = (gen[:, QMAX] != 0.) & (gen[:, QMIN] != 0.)
        mx = find(gen_status & qg_max_lim & non_refs)
        mn = find(gen_status & qg_min_lim & non_refs)

        if len(mx) > 0 or len(mn) > 0:  ## we have some Q limit violations
            ## one at a time?
            if qlim == 2:  ## fix largest violation, ignore the rest
                k = argmax(r_[gen[mx, QG] - gen[mx, QMAX],
                              gen[mn, QMIN] - gen[mn, QG]])
                if k > len(mx):
                    mn = mn[k - len(mx)]
                    mx = []
                else:
                    mx = mx[k]
                    mn = []

                    ## save corresponding limit values
            fixedQg[mx] = gen[mx, QMAX]
            fixedQg[mn] = gen[mn, QMIN]
            mx = r_[mx, mn].astype(int)

            ## convert to PQ bus
            gen[mx, QG] = fixedQg[mx]  ## set Qg to binding
            for i in mx:  ## [one at a time, since they may be at same bus]
                gen[i, GEN_STATUS] = 0  ## temporarily turn off gen,
                bi = gen[i, GEN_BUS].astype(int)  ## adjust load accordingly,
                bus[bi, [PD, QD]] = (bus[bi, [PD, QD]] - gen[i, [PG, QG]])

            if len(ref) > 1 and any(bus[gen[mx, GEN_BUS].astype(int),
                                        BUS_TYPE] == REF):
                raise ValueError('Sorry, pandapower cannot enforce Q '
                                 'limits for slack buses in systems '
                                 'with multiple slacks.')

            changed_gens = gen[mx, GEN_BUS].astype(int)
            bus[setdiff1d(changed_gens, ref),
                BUS_TYPE] = PQ  ## & set bus type to PQ

            ## update bus index lists of each type of bus
            ref, pv, pq = bustypes(bus, gen)

            limited = r_[limited, mx].astype(int)
        else:
            break  ## no more generator Q limits violated

    if len(limited) > 0:
        ## restore injections from limited gens [those at Q limits]
        gen[limited, QG] = fixedQg[limited]  ## restore Qg value,
        for i in limited:  ## [one at a time, since they may be at same bus]
            bi = gen[i, GEN_BUS].astype(int)  ## re-adjust load,
            bus[bi, [PD, QD]] = bus[bi, [PD, QD]] + gen[i, [PG, QG]]
            gen[i, GEN_STATUS] = 1  ## and turn gen back on

    return ppci, success, bus, gen, branch, it
def runpp_3ph(net,
              calculate_voltage_angles=True,
              init="auto",
              max_iteration="auto",
              tolerance_mva=1e-8,
              trafo_model='t',
              trafo_loading="current",
              enforce_q_lims=False,
              numba=True,
              recycle=None,
              check_connectivity=True,
              switch_rx_ratio=2.0,
              delta_q=0,
              v_debug=False,
              **kwargs):
    """
 runpp_3ph: Performs Unbalanced/Asymmetric/Three Phase Load flow

    INPUT:
        **net** - The pandapower format network

    OPTIONAL:
        **algorithm** (str, "nr") - algorithm that is used to solve the power
        flow problem.

            The following algorithms are available:

                - "nr" Newton-Raphson (pypower implementation with numba accelerations)

                Used only for positive sequence network

                Zero and Negative sequence networks use Current Injection method

                Vnew = Y.inv * Ispecified ( from s_abc/v_abc old)

                Icalculated = Y * Vnew


        **calculate_voltage_angles** (bool, "auto") - consider voltage angles
        in loadflow calculation

            If True, voltage angles of ext_grids and transformer shifts are
            considered in the loadflow calculation. Considering the voltage
            angles is only necessary in meshed networks that are usually
            found in higher voltage levels. calculate_voltage_angles
            in "auto" mode defaults to:

                - True, if the network voltage level is above 70 kV
                - False otherwise

            The network voltage level is defined as the maximum rated voltage
            of any bus in the network that is connected to a line.


        **max_iteration** (int, "auto") - maximum number of iterations carried
        out in the power flow algorithm.

            In "auto" mode, the default value depends on the power flow solver:

                - 10 for "nr"

            For three phase calculations, its extended to 3 * max_iteration

        **tolerance_mva** (float, 1e-8) - loadflow termination condition
        referring to P / Q mismatch of node power in MVA

        **trafo_model**

            - transformer equivalent models
            - "t" - transformer is modeled as equivalent with the T-model.
            - "pi" - This is not recommended, since it is less exact than the T-model. So, for three phase load flow, its not implemented


        **trafo_loading** (str, "current") - mode of calculation for
        transformer loading

            Transformer loading can be calculated relative to the rated
            current or the rated power. In both cases the overall transformer
            loading is defined as the maximum loading on the two sides of
            the transformer.

            - "current"- transformer loading is given as ratio of current
                        flow and rated current of the transformer. This is the recommended
                        setting, since thermal as well as magnetic effects in the
                        transformer depend on the current.
            - "power" - transformer loading is given as ratio of apparent
                        power flow to the rated apparent power of the transformer.

        **enforce_q_lims** (bool, False) (Not tested with 3 Phase load flow)
        - respect generator reactive power limits

            If True, the reactive power limits in net.gen.max_q_mvar/min_q_mvar
            are respected in the loadflow. This is done by running a second
            loadflow if reactive power limits are violated at any generator,
            so that the runtime for the loadflow will increase if reactive
            power has to be curtailed.

            Note: enforce_q_lims only works if algorithm="nr"!


        **check_connectivity** (bool, True) - Perform an extra connectivity
        test after the conversion from pandapower to PYPOWER.

            If True, an extra connectivity test based on SciPy Compressed
            Sparse Graph Routines is perfomed. If check finds unsupplied buses,
            they are set out of service in the ppc

        **voltage_depend_loads** (bool, True)
        (Not tested with 3 Phase load flow) - consideration of voltage-dependent loads.

            If False, ``net.load.const_z_percent`` and ``net.load.const_i_percent``
            are not considered, i.e. ``net.load.p_mw`` and ``net.load.q_mvar``
            are considered as constant-power loads.

        **consider_line_temperature** (bool, False) (Not tested with 3 Phase
        load flow) - adjustment of line impedance based on provided line temperature.

            If True, ``net.line`` must contain a column ``temperature_degree_celsius``.
            The temperature dependency coefficient alpha must be provided in
            the ``net.line.alpha`` column, otherwise the default value of 0.004 is used.


        **KWARGS**:

        **numba** (bool, True) - Activation of numba JIT compiler in the
        newton solver

            If set to True, the numba JIT compiler is used to generate
            matrices for the powerflow, which leads to significant speed
            improvements.

        **switch_rx_ratio** (float, 2)

        (Not tested with 3 Phase load flow)  - rx_ratio of bus-bus-switches.
        If impedance is zero, buses connected by a closed bus-bus switch
        are fused to model an ideal bus. Otherwise, they are modelled
        as branches with resistance defined as z_ohm column in switch
        table and this parameter

        **delta_q**

        (Not tested with 3 Phase load flow) - Reactive power tolerance for option "enforce_q_lims"
        in kvar - helps convergence in some cases.

        **trafo3w_losses**

        (Not tested with 3 Phase load flow) - defines where open loop losses of three-winding
        transformers are considered. Valid options are "hv", "mv", "lv"
        for HV/MV/LV side or "star" for the star point.

        **v_debug** (bool, False) (Not tested with 3 Phase load flow) - if True,
        voltage values in each newton-raphson iteration are logged in the ppc.

        **init_vm_pu** (string/float/array/Series, None) (Not tested with 3
        Phase load flow) - Allows to define initialization specifically for
        voltage magnitudes. Only works with ``init == "auto"``!

            - "auto": all buses are initialized with the mean value of all
              voltage controlled elements in the grid
            - "flat" for flat start from 1.0
            - "results": voltage magnitude vector is taken from result table
            - a float with which all voltage magnitudes are initialized
            - an iterable with a voltage magnitude value for each bus
              (length and order has to match with the buses in net.bus)
            - a pandas Series with a voltage magnitude value for each bus
              (indexes have to match the indexes in net.bus)

         **init_va_degree** (string/float/array/Series, None) (Not tested with
         3 Phase load flow) - Allows to define initialization specifically for voltage angles.
         Only works with ``init == "auto"``!

            - "auto": voltage angles are initialized from DC power flow
              if angles are calculated or as 0 otherwise
            - "dc": voltage angles are initialized from DC power flow
            - "flat" for flat start from 0
            - "results": voltage angle vector is taken from result table
            - a float with which all voltage angles are initialized
            - an iterable with a voltage angle value for each bus (length
              and order has to match with the buses in net.bus)
            - a pandas Series with a voltage angle value for each bus (indexes
              have to match the indexes in net.bus)

        **recycle** (dict, none) - Reuse of internal powerflow variables for
        time series calculation.

            Contains a dict with the following parameters:
            bus_pq: If True PQ values of buses are updated

            gen: If True Sbus and the gen table in the ppc are recalculated

            Ybus: If True the admittance matrix (Ybus, Yf, Yt) is taken from

            ppc["internal"] and not reconstructed

        **neglect_open_switch_branches** (bool, False)

        (Not tested with 3 Phase load flow) - If True no auxiliary
        buses are created for branches when switches are opened at the branch.
        Instead branches are set out of service

    SEE ALSO:
         pp.add_zero_impedance_parameters(net):
         To add zero sequence parameters into network from the standard type

    EXAMPLES:
        Use this module like this:

        .. code-block:: python

            from pandapower.pf.runpp_3ph import runpp_3ph
            runpp_3ph(net)

    NOTES:
        - Three phase load flow uses Sequence Frame for power flow solution.
        - Three phase system is modelled with earth return.
        - PH-E load type is called as wye since Neutral and Earth are considered same
        - This solver has proved successful only for Earthed transformers (i.e Dyn,Yyn,YNyn & Yzn vector groups)
    """
    # =============================================================================
    # pandapower settings
    # =============================================================================
    overrule_options = {}
    if "user_pf_options" in net.keys() and len(net.user_pf_options) > 0:
        passed_parameters = _passed_runpp_parameters(locals())
        overrule_options = {
            key: val
            for key, val in net.user_pf_options.items()
            if key not in passed_parameters.keys()
        }
    if numba:
        numba = _check_if_numba_is_installed(numba)

    ac = True
    mode = "pf_3ph"  # TODO: Make valid modes (pf, pf_3ph, se, etc.) available in seperate file (similar to idx_bus.py)
    #    v_debug = kwargs.get("v_debug", False)
    copy_constraints_to_ppc = False
    if trafo_model == 'pi':
        raise Not_implemented("Three phase Power Flow doesnot support pi model\
                                because of lack of accuracy")


#    if calculate_voltage_angles == "auto":
#        calculate_voltage_angles = False
#        hv_buses = np.where(net.bus.vn_kv.values > 70)[0]  # Todo: Where does that number come from?
#        if len(hv_buses) > 0:
#            line_buses = net.line[["from_bus", "to_bus"]].values.flatten()
#            if len(set(net.bus.index[hv_buses]) & set(line_buses)) > 0:
# scipy spsolve options in NR power flow
    use_umfpack = kwargs.get("use_umfpack", True)
    permc_spec = kwargs.get("permc_spec", None)
    calculate_voltage_angles = True
    if init == "results" and net.res_bus_3ph.empty:
        init = "auto"
    if init == "auto":
        init = "dc" if calculate_voltage_angles else "flat"
    default_max_iteration = {
        "nr": 10,
        "bfsw": 10,
        "gs": 10000,
        "fdxb": 30,
        "fdbx": 30
    }
    if max_iteration == "auto":
        max_iteration = default_max_iteration["nr"]

    neglect_open_switch_branches = kwargs.get("neglect_open_switch_branches",
                                              False)
    only_v_results = kwargs.get("only_v_results", False)
    net._options = {}
    _add_ppc_options(net, calculate_voltage_angles=calculate_voltage_angles,
                     trafo_model=trafo_model, check_connectivity=check_connectivity,
                     mode=mode, switch_rx_ratio=switch_rx_ratio,
                     init_vm_pu=init, init_va_degree=init,
                     enforce_q_lims=enforce_q_lims, recycle=None,
                     voltage_depend_loads=False, delta=delta_q,\
                     neglect_open_switch_branches=neglect_open_switch_branches
                     )
    _add_pf_options(net, tolerance_mva=tolerance_mva, trafo_loading=trafo_loading,
                    numba=numba, ac=ac, algorithm="nr", max_iteration=max_iteration,\
                    only_v_results=only_v_results,v_debug=v_debug, use_umfpack=use_umfpack,
                    permc_spec=permc_spec)
    net._options.update(overrule_options)
    _check_bus_index_and_print_warning_if_high(net)
    _check_gen_index_and_print_warning_if_high(net)
    # =========================================================================
    # pd2ppc conversion
    # =========================================================================
    _, ppci1 = _pd2ppc_recycle(net, 1, recycle=recycle)

    _, ppci2 = _pd2ppc_recycle(net, 2, recycle=recycle)
    gs_eg, bs_eg = _add_ext_grid_sc_impedance(net, ppci2)

    _, ppci0 = _pd2ppc_recycle(net, 0, recycle=recycle)

    _, bus0, gen0, branch0, _, _, _ = _get_pf_variables_from_ppci(ppci0)
    base_mva, bus1, gen1, branch1, sl_bus, _, pq_bus = _get_pf_variables_from_ppci(
        ppci1)
    _, bus2, gen2, branch2, _, _, _ = _get_pf_variables_from_ppci(ppci2)

    # initialize the results after the conversion to ppc is done, otherwise init=results does not work
    init_results(net, "pf_3ph")

    # =============================================================================
    #     P Q values aggragated and summed up for each bus to make s_abc matrix
    #     s_abc for wye connections ; s_abc_delta for delta connection
    # =============================================================================
    s_abc_delta, s_abc = _load_mapping(net, ppci1)
    # =========================================================================
    # Construct Sequence Frame Bus admittance matrices Ybus
    # =========================================================================

    ppci0, ppci1, ppci2, y_0_pu, y_1_pu, y_2_pu, y_0_f, y_1_f, _,\
        y_0_t, y_1_t, _ = _get_y_bus(ppci0, ppci1, ppci2, recycle)
    # =========================================================================
    # Initial voltage values
    # =========================================================================
    nb = ppci1["bus"].shape[0]

    # make sure flat start is always respected, even with other voltage data in recycled ppc
    if init == "flat":
        v_012_it = np.zeros((3, nb), dtype=np.complex128)
        v_012_it[1, :] = 1.0
    else:
        v_012_it = np.concatenate([
            np.array(ppc["bus"][:, VM] *
                     np.exp(1j * np.deg2rad(ppc["bus"][:, VA]))).reshape(
                         (1, nb)) for ppc in (ppci0, ppci1, ppci2)
        ],
                                  axis=0).astype(np.complex128)

    # For Delta transformation:
    # Voltage changed from line-earth to line-line using V_T
    # s_abc/v_abc will now give line-line currents. This is converted to line-earth
    # current using I-T
    v_del_xfmn = np.array([[1, -1, 0], [0, 1, -1], [-1, 0, 1]])
    i_del_xfmn = np.array([[1, 0, -1], [-1, 1, 0], [0, -1, 1]])
    v_abc_it = sequence_to_phase(v_012_it)

    # =========================================================================
    #             Iteration using Power mismatch criterion
    # =========================================================================
    outer_tolerance_mva = 3e-8
    count = 0
    s_mismatch = np.array([[True], [True]], dtype=bool)
    t0 = perf_counter()
    while (s_mismatch >
           outer_tolerance_mva).any() and count < 30 * max_iteration:
        # =====================================================================
        #     Voltages and Current transformation for PQ and Slack bus
        # =====================================================================
        s_abc_pu = -np.divide(s_abc, ppci1["baseMVA"])
        s_abc_delta_pu = -np.divide(s_abc_delta, ppci1["baseMVA"])

        i_abc_it_wye = (np.divide(s_abc_pu, v_abc_it)).conjugate()
        i_abc_it_delta = np.matmul(i_del_xfmn, (np.divide(
            s_abc_delta_pu, np.matmul(v_del_xfmn, v_abc_it))).conjugate())

        # For buses with both delta and wye loads we need to sum of their currents
        # to sum up the currents
        i_abc_it = i_abc_it_wye + i_abc_it_delta
        i012_it = phase_to_sequence(i_abc_it)
        v1_for_s1 = v_012_it[1, :]
        i1_for_s1 = -i012_it[1, :]
        v0_pu_it = X012_to_X0(v_012_it)
        v2_pu_it = X012_to_X2(v_012_it)
        i0_pu_it = X012_to_X0(i012_it)
        i2_pu_it = X012_to_X2(i012_it)
        s1 = np.multiply(v1_for_s1, i1_for_s1.conjugate())
        # =============================================================================
        # Current used to find S1 Positive sequence power
        # =============================================================================

        ppci1["bus"][pq_bus, PD] = np.real(s1[pq_bus]) * ppci1["baseMVA"]
        ppci1["bus"][pq_bus, QD] = np.imag(s1[pq_bus]) * ppci1["baseMVA"]
        # =============================================================================
        # Conduct Positive sequence power flow
        # =============================================================================
        _run_newton_raphson_pf(ppci1, net._options)
        # =============================================================================
        # Conduct Negative and Zero sequence power flow
        # =============================================================================
        v0_pu_it = V_from_I(y_0_pu, i0_pu_it)
        v2_pu_it = V_from_I(y_2_pu, i2_pu_it)
        # =============================================================================
        #    Evaluate Positive Sequence Power Mismatch
        # =============================================================================
        i1_from_v_it = I1_from_V012(v_012_it, y_1_pu).flatten()
        s_from_voltage = S_from_VI_elementwise(v1_for_s1, i1_from_v_it)
        v1_pu_it = V1_from_ppc(ppci1)

        v_012_new = combine_X012(v0_pu_it, v1_pu_it, v2_pu_it)

        s_mismatch = np.abs(
            np.abs(s1[pq_bus]) - np.abs(s_from_voltage[pq_bus]))
        v_012_it = v_012_new
        v_abc_it = sequence_to_phase(v_012_it)
        count += 1
    et = perf_counter() - t0
    success = (count < 30 * max_iteration)
    for ppc in [ppci0, ppci1, ppci2]:
        ppc["et"] = et
        ppc["success"] = success
    # TODO: Add reference to paper to explain the following steps
    # This is required since the ext_grid power results are not correct if its
    # not done
    ref, pv, pq = bustypes(ppci0["bus"], ppci0["gen"])
    ref_gens = ppci0["internal"]["ref_gens"]
    ppci0["bus"][ref, GS] -= gs_eg
    ppci0["bus"][ref, BS] -= bs_eg
    y_0_pu, y_0_f, y_0_t = makeYbus(ppci0["baseMVA"], ppci0["bus"],
                                    ppci0["branch"])
    # revert the change, otherwise repeated calculation with recycled elements will fail
    ppci0["bus"][ref, GS] += gs_eg
    ppci0["bus"][ref, BS] += bs_eg
    # Bus, Branch, and Gen  power values
    bus0, gen0, branch0 = pfsoln(base_mva, bus0, gen0, branch0, y_0_pu, y_0_f,
                                 y_0_t, v_012_it[0, :].flatten(), sl_bus,
                                 ref_gens)
    bus1, gen1, branch1 = pfsoln(base_mva, bus1, gen1, branch1, y_1_pu, y_1_f,
                                 y_1_t, v_012_it[1, :].flatten(), sl_bus,
                                 ref_gens)
    bus2, gen2, branch2 = pfsoln(base_mva, bus2, gen2, branch2, y_1_pu, y_1_f,
                                 y_1_t, v_012_it[2, :].flatten(), sl_bus,
                                 ref_gens)
    ppci0 = _store_results_from_pf_in_ppci(ppci0, bus0, gen0, branch0)
    ppci1 = _store_results_from_pf_in_ppci(ppci1, bus1, gen1, branch1)
    ppci2 = _store_results_from_pf_in_ppci(ppci2, bus2, gen2, branch2)
    i_012_res = _current_from_voltage_results(y_0_pu, y_1_pu, v_012_it)
    s_012_res = S_from_VI_elementwise(v_012_it, i_012_res) * ppci1["baseMVA"]
    eg_is_mask = net["_is_elements"]['ext_grid']
    ext_grid_lookup = net["_pd2ppc_lookups"]["ext_grid"]
    eg_is_idx = net["ext_grid"].index.values[eg_is_mask]
    eg_idx_ppc = ext_grid_lookup[eg_is_idx]
    """ # 2 ext_grids Fix: Instead of the generator index, bus indices of the generators are used"""
    eg_bus_idx_ppc = np.real(ppci1["gen"][eg_idx_ppc, GEN_BUS]).astype(int)

    ppci0["gen"][eg_idx_ppc, PG] = s_012_res[0, eg_bus_idx_ppc].real
    ppci1["gen"][eg_idx_ppc, PG] = s_012_res[1, eg_bus_idx_ppc].real
    ppci2["gen"][eg_idx_ppc, PG] = s_012_res[2, eg_bus_idx_ppc].real
    ppci0["gen"][eg_idx_ppc, QG] = s_012_res[0, eg_bus_idx_ppc].imag
    ppci1["gen"][eg_idx_ppc, QG] = s_012_res[1, eg_bus_idx_ppc].imag
    ppci2["gen"][eg_idx_ppc, QG] = s_012_res[2, eg_bus_idx_ppc].imag

    ppc0 = net["_ppc0"]
    ppc1 = net["_ppc1"]
    ppc2 = net["_ppc2"]

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    ppc0 = _copy_results_ppci_to_ppc(ppci0, ppc0, mode=mode)
    ppc1 = _copy_results_ppci_to_ppc(ppci1, ppc1, mode=mode)
    ppc2 = _copy_results_ppci_to_ppc(ppci2, ppc2, mode=mode)

    _extract_results_3ph(net, ppc0, ppc1, ppc2)

    #    Raise error if PF was not successful. If DC -> success is always 1

    if not ppci0["success"]:
        net["converged"] = False
        _clean_up(net, res=False)
        raise LoadflowNotConverged("Power Flow {0} did not converge after\
                                {1} iterations!".format("nr", count))
    else:
        net["converged"] = True

    _clean_up(net)