Beispiel #1
0
    def _from_arraylike(cls, data, freq, tz):
        if freq is not None:
            freq = Period._maybe_convert_freq(freq)

        if not isinstance(data, (np.ndarray, PeriodIndex,
                                 DatetimeIndex, Int64Index)):
            if is_scalar(data) or isinstance(data, Period):
                raise ValueError('PeriodIndex() must be called with a '
                                 'collection of some kind, %s was passed'
                                 % repr(data))

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            try:
                data = _ensure_int64(data)
                if freq is None:
                    raise ValueError('freq not specified')
                data = np.array([Period(x, freq=freq) for x in data],
                                dtype=np.int64)
            except (TypeError, ValueError):
                data = _ensure_object(data)

                if freq is None:
                    freq = period.extract_freq(data)
                data = period.extract_ordinals(data, freq)
        else:
            if isinstance(data, PeriodIndex):
                if freq is None or freq == data.freq:
                    freq = data.freq
                    data = data._values
                else:
                    base1, _ = _gfc(data.freq)
                    base2, _ = _gfc(freq)
                    data = period.period_asfreq_arr(data._values,
                                                    base1, base2, 1)
            else:
                if is_object_dtype(data):
                    inferred = infer_dtype(data)
                    if inferred == 'integer':
                        data = data.astype(np.int64)

                if freq is None and is_object_dtype(data):
                    # must contain Period instance and thus extract ordinals
                    freq = period.extract_freq(data)
                    data = period.extract_ordinals(data, freq)

                if freq is None:
                    msg = 'freq not specified and cannot be inferred'
                    raise ValueError(msg)

                if data.dtype != np.int64:
                    if np.issubdtype(data.dtype, np.datetime64):
                        data = dt64arr_to_periodarr(data, freq, tz)
                    else:
                        data = _ensure_object(data)
                        data = period.extract_ordinals(data, freq)

        return data, freq
Beispiel #2
0
    def _from_arraylike(cls, data, freq, tz):
        if freq is not None:
            freq = Period._maybe_convert_freq(freq)

        if not isinstance(
                data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)):
            if is_scalar(data) or isinstance(data, Period):
                raise ValueError('PeriodIndex() must be called with a '
                                 'collection of some kind, %s was passed' %
                                 repr(data))

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            try:
                data = _ensure_int64(data)
                if freq is None:
                    raise ValueError('freq not specified')
                data = np.array([Period(x, freq=freq) for x in data],
                                dtype=np.int64)
            except (TypeError, ValueError):
                data = _ensure_object(data)

                if freq is None:
                    freq = period.extract_freq(data)
                data = period.extract_ordinals(data, freq)
        else:
            if isinstance(data, PeriodIndex):
                if freq is None or freq == data.freq:
                    freq = data.freq
                    data = data._values
                else:
                    base1, _ = _gfc(data.freq)
                    base2, _ = _gfc(freq)
                    data = period.period_asfreq_arr(data._values, base1, base2,
                                                    1)
            else:
                if is_object_dtype(data):
                    inferred = infer_dtype(data)
                    if inferred == 'integer':
                        data = data.astype(np.int64)

                if freq is None and is_object_dtype(data):
                    # must contain Period instance and thus extract ordinals
                    freq = period.extract_freq(data)
                    data = period.extract_ordinals(data, freq)

                if freq is None:
                    msg = 'freq not specified and cannot be inferred'
                    raise ValueError(msg)

                if data.dtype != np.int64:
                    if np.issubdtype(data.dtype, np.datetime64):
                        data = dt64arr_to_periodarr(data, freq, tz)
                    else:
                        data = _ensure_object(data)
                        data = period.extract_ordinals(data, freq)

        return data, freq
Beispiel #3
0
    def __new__(cls,
                data=None,
                ordinal=None,
                freq=None,
                start=None,
                end=None,
                periods=None,
                copy=False,
                name=None,
                tz=None,
                dtype=None,
                **kwargs):

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if name is None and hasattr(data, 'name'):
            name = data.name

        if dtype is not None:
            dtype = pandas_dtype(dtype)
            if not is_period_dtype(dtype):
                raise ValueError('dtype must be PeriodDtype')
            if freq is None:
                freq = dtype.freq
            elif freq != dtype.freq:
                msg = 'specified freq and dtype are different'
                raise IncompatibleFrequency(msg)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods, freq,
                                                 kwargs)
            return cls._from_ordinals(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._values, base1, base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(
                data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)):
            if is_scalar(data) or isinstance(data, Period):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._from_ordinals(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = _ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._from_ordinals(data, name=name, freq=freq)