Beispiel #1
0
    def test_hist_df_legacy(self):
        from matplotlib.patches import Rectangle

        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(self.hist_df.hist)

        # make sure layout is handled
        df = DataFrame(randn(100, 2))
        df[2] = to_datetime(
            np.random.randint(
                self.start_date_to_int64,
                self.end_date_to_int64,
                size=100,
                dtype=np.int64,
            ))
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(df.hist, grid=False)
        self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
        assert not axes[1, 1].get_visible()

        _check_plot_works(df[[2]].hist)
        df = DataFrame(randn(100, 1))
        _check_plot_works(df.hist)

        # make sure layout is handled
        df = DataFrame(randn(100, 5))
        df[5] = to_datetime(
            np.random.randint(
                self.start_date_to_int64,
                self.end_date_to_int64,
                size=100,
                dtype=np.int64,
            ))
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(df.hist, layout=(4, 2))
        self._check_axes_shape(axes, axes_num=6, layout=(4, 2))

        # make sure sharex, sharey is handled
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.hist, sharex=True, sharey=True)

        # handle figsize arg
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.hist, figsize=(8, 10))

        # check bins argument
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.hist, bins=5)

        # make sure xlabelsize and xrot are handled
        ser = df[0]
        xf, yf = 20, 18
        xrot, yrot = 30, 40
        axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
        self._check_ticks_props(axes,
                                xlabelsize=xf,
                                xrot=xrot,
                                ylabelsize=yf,
                                yrot=yrot)

        xf, yf = 20, 18
        xrot, yrot = 30, 40
        axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
        self._check_ticks_props(axes,
                                xlabelsize=xf,
                                xrot=xrot,
                                ylabelsize=yf,
                                yrot=yrot)

        tm.close()

        ax = ser.hist(cumulative=True, bins=4, density=True)
        # height of last bin (index 5) must be 1.0
        rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
        tm.assert_almost_equal(rects[-1].get_height(), 1.0)

        tm.close()
        ax = ser.hist(log=True)
        # scale of y must be 'log'
        self._check_ax_scales(ax, yaxis="log")

        tm.close()

        # propagate attr exception from matplotlib.Axes.hist
        with pytest.raises(AttributeError):
            ser.hist(foo="bar")
    def test_grouped_hist_layout(self):
        df = self.hist_df
        msg = "Layout of 1x1 must be larger than required size 2"
        with pytest.raises(ValueError, match=msg):
            df.hist(column="weight", by=df.gender, layout=(1, 1))

        msg = "Layout of 1x3 must be larger than required size 4"
        with pytest.raises(ValueError, match=msg):
            df.hist(column="height", by=df.category, layout=(1, 3))

        msg = "At least one dimension of layout must be positive"
        with pytest.raises(ValueError, match=msg):
            df.hist(column="height", by=df.category, layout=(-1, -1))

        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(df.hist,
                                     column="height",
                                     by=df.gender,
                                     layout=(2, 1))
        self._check_axes_shape(axes, axes_num=2, layout=(2, 1))

        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(df.hist,
                                     column="height",
                                     by=df.gender,
                                     layout=(2, -1))
        self._check_axes_shape(axes, axes_num=2, layout=(2, 1))

        axes = df.hist(column="height", by=df.category, layout=(4, 1))
        self._check_axes_shape(axes, axes_num=4, layout=(4, 1))

        axes = df.hist(column="height", by=df.category, layout=(-1, 1))
        self._check_axes_shape(axes, axes_num=4, layout=(4, 1))

        axes = df.hist(column="height",
                       by=df.category,
                       layout=(4, 2),
                       figsize=(12, 8))
        self._check_axes_shape(axes,
                               axes_num=4,
                               layout=(4, 2),
                               figsize=(12, 8))
        tm.close()

        # GH 6769
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(df.hist,
                                     column="height",
                                     by="classroom",
                                     layout=(2, 2))
        self._check_axes_shape(axes, axes_num=3, layout=(2, 2))

        # without column
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(df.hist, by="classroom")
        self._check_axes_shape(axes, axes_num=3, layout=(2, 2))

        axes = df.hist(by="gender", layout=(3, 5))
        self._check_axes_shape(axes, axes_num=2, layout=(3, 5))

        axes = df.hist(column=["height", "weight", "category"])
        self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
Beispiel #3
0
    def test_tight_layout(self):
        df = DataFrame(randn(100, 3))
        _check_plot_works(df.hist)
        self.plt.tight_layout()

        tm.close()
Beispiel #4
0
    def test_df_series_secondary_legend(self):
        # GH 9779
        df = DataFrame(np.random.randn(30, 3), columns=list("abc"))
        s = Series(np.random.randn(30), name="x")

        # primary -> secondary (without passing ax)
        _, ax = self.plt.subplots()
        ax = df.plot(ax=ax)
        s.plot(legend=True, secondary_y=True, ax=ax)
        # both legends are dran on left ax
        # left and right axis must be visible
        self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
        assert ax.get_yaxis().get_visible()
        assert ax.right_ax.get_yaxis().get_visible()
        tm.close()

        # primary -> secondary (with passing ax)
        _, ax = self.plt.subplots()
        ax = df.plot(ax=ax)
        s.plot(ax=ax, legend=True, secondary_y=True)
        # both legends are dran on left ax
        # left and right axis must be visible
        self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
        assert ax.get_yaxis().get_visible()
        assert ax.right_ax.get_yaxis().get_visible()
        tm.close()

        # secondary -> secondary (without passing ax)
        _, ax = self.plt.subplots()
        ax = df.plot(secondary_y=True, ax=ax)
        s.plot(legend=True, secondary_y=True, ax=ax)
        # both legends are dran on left ax
        # left axis must be invisible and right axis must be visible
        expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
        self._check_legend_labels(ax.left_ax, labels=expected)
        assert not ax.left_ax.get_yaxis().get_visible()
        assert ax.get_yaxis().get_visible()
        tm.close()

        # secondary -> secondary (with passing ax)
        _, ax = self.plt.subplots()
        ax = df.plot(secondary_y=True, ax=ax)
        s.plot(ax=ax, legend=True, secondary_y=True)
        # both legends are dran on left ax
        # left axis must be invisible and right axis must be visible
        expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
        self._check_legend_labels(ax.left_ax, expected)
        assert not ax.left_ax.get_yaxis().get_visible()
        assert ax.get_yaxis().get_visible()
        tm.close()

        # secondary -> secondary (with passing ax)
        _, ax = self.plt.subplots()
        ax = df.plot(secondary_y=True, mark_right=False, ax=ax)
        s.plot(ax=ax, legend=True, secondary_y=True)
        # both legends are dran on left ax
        # left axis must be invisible and right axis must be visible
        expected = ["a", "b", "c", "x (right)"]
        self._check_legend_labels(ax.left_ax, expected)
        assert not ax.left_ax.get_yaxis().get_visible()
        assert ax.get_yaxis().get_visible()
        tm.close()
    def test_grouped_hist_legacy(self):
        from matplotlib.patches import Rectangle

        from pandas.plotting._matplotlib.hist import _grouped_hist

        df = DataFrame(np.random.randn(500, 1), columns=["A"])
        df["B"] = to_datetime(
            np.random.randint(
                self.start_date_to_int64,
                self.end_date_to_int64,
                size=500,
                dtype=np.int64,
            ))
        df["C"] = np.random.randint(0, 4, 500)
        df["D"] = ["X"] * 500

        axes = _grouped_hist(df.A, by=df.C)
        self._check_axes_shape(axes, axes_num=4, layout=(2, 2))

        tm.close()
        axes = df.hist(by=df.C)
        self._check_axes_shape(axes, axes_num=4, layout=(2, 2))

        tm.close()
        # group by a key with single value
        axes = df.hist(by="D", rot=30)
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
        self._check_ticks_props(axes, xrot=30)

        tm.close()
        # make sure kwargs to hist are handled
        xf, yf = 20, 18
        xrot, yrot = 30, 40

        axes = _grouped_hist(
            df.A,
            by=df.C,
            cumulative=True,
            bins=4,
            xlabelsize=xf,
            xrot=xrot,
            ylabelsize=yf,
            yrot=yrot,
            density=True,
        )
        # height of last bin (index 5) must be 1.0
        for ax in axes.ravel():
            rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
            height = rects[-1].get_height()
            tm.assert_almost_equal(height, 1.0)
        self._check_ticks_props(axes,
                                xlabelsize=xf,
                                xrot=xrot,
                                ylabelsize=yf,
                                yrot=yrot)

        tm.close()
        axes = _grouped_hist(df.A, by=df.C, log=True)
        # scale of y must be 'log'
        self._check_ax_scales(axes, yaxis="log")

        tm.close()
        # propagate attr exception from matplotlib.Axes.hist
        with pytest.raises(AttributeError):
            _grouped_hist(df.A, by=df.C, foo="bar")

        msg = "Specify figure size by tuple instead"
        with pytest.raises(ValueError, match=msg):
            df.hist(by="C", figsize="default")
Beispiel #6
0
    def test_boxplot_colors(self):
        def _check_colors(bp,
                          box_c,
                          whiskers_c,
                          medians_c,
                          caps_c="k",
                          fliers_c=None):
            # TODO: outside this func?
            if fliers_c is None:
                fliers_c = "k"
            self._check_colors(bp["boxes"],
                               linecolors=[box_c] * len(bp["boxes"]))
            self._check_colors(bp["whiskers"],
                               linecolors=[whiskers_c] * len(bp["whiskers"]))
            self._check_colors(bp["medians"],
                               linecolors=[medians_c] * len(bp["medians"]))
            self._check_colors(bp["fliers"],
                               linecolors=[fliers_c] * len(bp["fliers"]))
            self._check_colors(bp["caps"],
                               linecolors=[caps_c] * len(bp["caps"]))

        default_colors = self._unpack_cycler(self.plt.rcParams)

        df = DataFrame(np.random.randn(5, 5))
        bp = df.plot.box(return_type="dict")
        _check_colors(bp, default_colors[0], default_colors[0],
                      default_colors[2])
        tm.close()

        dict_colors = {
            "boxes": "#572923",
            "whiskers": "#982042",
            "medians": "#804823",
            "caps": "#123456",
        }
        bp = df.plot.box(color=dict_colors, sym="r+", return_type="dict")
        _check_colors(
            bp,
            dict_colors["boxes"],
            dict_colors["whiskers"],
            dict_colors["medians"],
            dict_colors["caps"],
            "r",
        )
        tm.close()

        # partial colors
        dict_colors = {"whiskers": "c", "medians": "m"}
        bp = df.plot.box(color=dict_colors, return_type="dict")
        _check_colors(bp, default_colors[0], "c", "m")
        tm.close()

        from matplotlib import cm

        # Test str -> colormap functionality
        bp = df.plot.box(colormap="jet", return_type="dict")
        jet_colors = [cm.jet(n) for n in np.linspace(0, 1, 3)]
        _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2])
        tm.close()

        # Test colormap functionality
        bp = df.plot.box(colormap=cm.jet, return_type="dict")
        _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2])
        tm.close()

        # string color is applied to all artists except fliers
        bp = df.plot.box(color="DodgerBlue", return_type="dict")
        _check_colors(bp, "DodgerBlue", "DodgerBlue", "DodgerBlue",
                      "DodgerBlue")

        # tuple is also applied to all artists except fliers
        bp = df.plot.box(color=(0, 1, 0), sym="#123456", return_type="dict")
        _check_colors(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0),
                      "#123456")

        with pytest.raises(ValueError):
            # Color contains invalid key results in ValueError
            df.plot.box(color={"boxes": "red", "xxxx": "blue"})
Beispiel #7
0
 def teardown_method(self, method):
     tm.close()
Beispiel #8
0
    def test_kde_colors_and_styles_subplots(self):
        from matplotlib import cm

        default_colors = self._unpack_cycler(self.plt.rcParams)

        df = DataFrame(np.random.randn(5, 5))

        axes = df.plot(kind="kde", subplots=True)
        for ax, c in zip(axes, list(default_colors)):
            self._check_colors(ax.get_lines(), linecolors=[c])
        tm.close()

        # single color char
        axes = df.plot(kind="kde", color="k", subplots=True)
        for ax in axes:
            self._check_colors(ax.get_lines(), linecolors=["k"])
        tm.close()

        # single color str
        axes = df.plot(kind="kde", color="red", subplots=True)
        for ax in axes:
            self._check_colors(ax.get_lines(), linecolors=["red"])
        tm.close()

        custom_colors = "rgcby"
        axes = df.plot(kind="kde", color=custom_colors, subplots=True)
        for ax, c in zip(axes, list(custom_colors)):
            self._check_colors(ax.get_lines(), linecolors=[c])
        tm.close()

        rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
        for cmap in ["jet", cm.jet]:
            axes = df.plot(kind="kde", colormap=cmap, subplots=True)
            for ax, c in zip(axes, rgba_colors):
                self._check_colors(ax.get_lines(), linecolors=[c])
            tm.close()

        # make color a list if plotting one column frame
        # handles cases like df.plot(color='DodgerBlue')
        axes = df.loc[:, [0]].plot(kind="kde",
                                   color="DodgerBlue",
                                   subplots=True)
        self._check_colors(axes[0].lines, linecolors=["DodgerBlue"])

        # single character static
        axes = df.plot(kind="kde", style="r", subplots=True)
        for ax in axes:
            self._check_colors(ax.get_lines(), linecolors=["r"])
        tm.close()

        # list of static
        styles = list("rgcby")
        axes = df.plot(kind="kde", style=styles, subplots=True)
        for ax, c in zip(axes, styles):
            self._check_colors(ax.get_lines(), linecolors=[c])
        tm.close()
Beispiel #9
0
    def test_line_colors(self):
        from matplotlib import cm

        custom_colors = "rgcby"
        df = DataFrame(np.random.randn(5, 5))

        ax = df.plot(color=custom_colors)
        self._check_colors(ax.get_lines(), linecolors=custom_colors)

        tm.close()

        ax2 = df.plot(color=custom_colors)
        lines2 = ax2.get_lines()

        for l1, l2 in zip(ax.get_lines(), lines2):
            assert l1.get_color() == l2.get_color()

        tm.close()

        ax = df.plot(colormap="jet")
        rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
        self._check_colors(ax.get_lines(), linecolors=rgba_colors)
        tm.close()

        ax = df.plot(colormap=cm.jet)
        rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
        self._check_colors(ax.get_lines(), linecolors=rgba_colors)
        tm.close()

        # make color a list if plotting one column frame
        # handles cases like df.plot(color='DodgerBlue')
        ax = df.loc[:, [0]].plot(color="DodgerBlue")
        self._check_colors(ax.lines, linecolors=["DodgerBlue"])

        ax = df.plot(color="red")
        self._check_colors(ax.get_lines(), linecolors=["red"] * 5)
        tm.close()

        # GH 10299
        custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"]
        ax = df.plot(color=custom_colors)
        self._check_colors(ax.get_lines(), linecolors=custom_colors)
        tm.close()
Beispiel #10
0
    def test_bar_colors(self):
        import matplotlib.pyplot as plt

        default_colors = self._unpack_cycler(plt.rcParams)

        df = DataFrame(np.random.randn(5, 5))
        ax = df.plot.bar()
        self._check_colors(ax.patches[::5], facecolors=default_colors[:5])
        tm.close()

        custom_colors = "rgcby"
        ax = df.plot.bar(color=custom_colors)
        self._check_colors(ax.patches[::5], facecolors=custom_colors)
        tm.close()

        from matplotlib import cm

        # Test str -> colormap functionality
        ax = df.plot.bar(colormap="jet")
        rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
        self._check_colors(ax.patches[::5], facecolors=rgba_colors)
        tm.close()

        # Test colormap functionality
        ax = df.plot.bar(colormap=cm.jet)
        rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
        self._check_colors(ax.patches[::5], facecolors=rgba_colors)
        tm.close()

        ax = df.loc[:, [0]].plot.bar(color="DodgerBlue")
        self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"])
        tm.close()

        ax = df.plot(kind="bar", color="green")
        self._check_colors(ax.patches[::5], facecolors=["green"] * 5)
        tm.close()
Beispiel #11
0
 def test_plot_submethod_works(self):
     df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
     df.groupby("z").plot.scatter("x", "y")
     tm.close()
     df.groupby("z")["x"].plot.line()
     tm.close()
Beispiel #12
0
    def test_subplots_multiple_axes(self):
        # GH 5353, 6970, GH 7069
        fig, axes = self.plt.subplots(2, 3)
        df = DataFrame(np.random.rand(10, 3),
                       index=list(string.ascii_letters[:10]))

        returned = df.plot(subplots=True,
                           ax=axes[0],
                           sharex=False,
                           sharey=False)
        self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
        assert returned.shape == (3, )
        assert returned[0].figure is fig
        # draw on second row
        returned = df.plot(subplots=True,
                           ax=axes[1],
                           sharex=False,
                           sharey=False)
        self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
        assert returned.shape == (3, )
        assert returned[0].figure is fig
        self._check_axes_shape(axes, axes_num=6, layout=(2, 3))
        tm.close()

        msg = "The number of passed axes must be 3, the same as the output plot"

        with pytest.raises(ValueError, match=msg):
            fig, axes = self.plt.subplots(2, 3)
            # pass different number of axes from required
            df.plot(subplots=True, ax=axes)

        # pass 2-dim axes and invalid layout
        # invalid lauout should not affect to input and return value
        # (show warning is tested in
        # TestDataFrameGroupByPlots.test_grouped_box_multiple_axes
        fig, axes = self.plt.subplots(2, 2)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", UserWarning)
            df = DataFrame(np.random.rand(10, 4),
                           index=list(string.ascii_letters[:10]))

            returned = df.plot(subplots=True,
                               ax=axes,
                               layout=(2, 1),
                               sharex=False,
                               sharey=False)
            self._check_axes_shape(returned, axes_num=4, layout=(2, 2))
            assert returned.shape == (4, )

            returned = df.plot(subplots=True,
                               ax=axes,
                               layout=(2, -1),
                               sharex=False,
                               sharey=False)
            self._check_axes_shape(returned, axes_num=4, layout=(2, 2))
            assert returned.shape == (4, )

            returned = df.plot(subplots=True,
                               ax=axes,
                               layout=(-1, 2),
                               sharex=False,
                               sharey=False)
        self._check_axes_shape(returned, axes_num=4, layout=(2, 2))
        assert returned.shape == (4, )

        # single column
        fig, axes = self.plt.subplots(1, 1)
        df = DataFrame(np.random.rand(10, 1),
                       index=list(string.ascii_letters[:10]))

        axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False)
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
        assert axes.shape == (1, )