Beispiel #1
0
def agg_dict_like(
    obj: AggObjType,
    arg: AggFuncTypeDict,
    _axis: int,
) -> FrameOrSeriesUnion:
    """
    Compute aggregation in the case of a dict-like argument.

    Parameters
    ----------
    obj : Pandas object to compute aggregation on.
    arg : dict
        label-aggregation pairs to compute.
    _axis : int, 0 or 1
        Axis to compute aggregation on.

    Returns
    -------
    Result of aggregation.
    """
    is_aggregator = lambda x: isinstance(x, (list, tuple, dict))

    if _axis != 0:  # pragma: no cover
        raise ValueError("Can only pass dict with axis=0")

    selected_obj = obj._selected_obj

    # if we have a dict of any non-scalars
    # eg. {'A' : ['mean']}, normalize all to
    # be list-likes
    if any(is_aggregator(x) for x in arg.values()):
        new_arg: AggFuncTypeDict = {}
        for k, v in arg.items():
            if not isinstance(v, (tuple, list, dict)):
                new_arg[k] = [v]
            else:
                new_arg[k] = v

            # the keys must be in the columns
            # for ndim=2, or renamers for ndim=1

            # ok for now, but deprecated
            # {'A': { 'ra': 'mean' }}
            # {'A': { 'ra': ['mean'] }}
            # {'ra': ['mean']}

            # not ok
            # {'ra' : { 'A' : 'mean' }}
            if isinstance(v, dict):
                raise SpecificationError("nested renamer is not supported")
            elif isinstance(selected_obj, ABCSeries):
                raise SpecificationError("nested renamer is not supported")
            elif (
                isinstance(selected_obj, ABCDataFrame) and k not in selected_obj.columns
            ):
                raise KeyError(f"Column '{k}' does not exist!")

        arg = new_arg

    else:
        # deprecation of renaming keys
        # GH 15931
        keys = list(arg.keys())
        if isinstance(selected_obj, ABCDataFrame) and len(
            selected_obj.columns.intersection(keys)
        ) != len(keys):
            cols = sorted(set(keys) - set(selected_obj.columns.intersection(keys)))
            raise SpecificationError(f"Column(s) {cols} do not exist")

    from pandas.core.reshape.concat import concat

    if selected_obj.ndim == 1:
        # key only used for output
        colg = obj._gotitem(obj._selection, ndim=1)
        results = {key: colg.agg(how) for key, how in arg.items()}
    else:
        # key used for column selection and output
        results = {key: obj._gotitem(key, ndim=1).agg(how) for key, how in arg.items()}

    # set the final keys
    keys = list(arg.keys())

    # Avoid making two isinstance calls in all and any below
    is_ndframe = [isinstance(r, ABCNDFrame) for r in results.values()]

    # combine results
    if all(is_ndframe):
        keys_to_use = [k for k in keys if not results[k].empty]
        # Have to check, if at least one DataFrame is not empty.
        keys_to_use = keys_to_use if keys_to_use != [] else keys
        axis = 0 if isinstance(obj, ABCSeries) else 1
        result = concat({k: results[k] for k in keys_to_use}, axis=axis)
    elif any(is_ndframe):
        # There is a mix of NDFrames and scalars
        raise ValueError(
            "cannot perform both aggregation "
            "and transformation operations "
            "simultaneously"
        )
    else:
        from pandas import Series

        # we have a dict of scalars
        # GH 36212 use name only if obj is a series
        if obj.ndim == 1:
            obj = cast("Series", obj)
            name = obj.name
        else:
            name = None

        result = Series(results, name=name)

    return result
Beispiel #2
0
def agg_list_like(
    obj: AggObjType,
    arg: List[AggFuncTypeBase],
    _axis: int,
) -> FrameOrSeriesUnion:
    """
    Compute aggregation in the case of a list-like argument.

    Parameters
    ----------
    obj : Pandas object to compute aggregation on.
    arg : list
        Aggregations to compute.
    _axis : int, 0 or 1
        Axis to compute aggregation on.

    Returns
    -------
    Result of aggregation.
    """
    from pandas.core.reshape.concat import concat

    if _axis != 0:
        raise NotImplementedError("axis other than 0 is not supported")

    if obj._selected_obj.ndim == 1:
        selected_obj = obj._selected_obj
    else:
        selected_obj = obj._obj_with_exclusions

    results = []
    keys = []

    # degenerate case
    if selected_obj.ndim == 1:
        for a in arg:
            colg = obj._gotitem(selected_obj.name, ndim=1, subset=selected_obj)
            try:
                new_res = colg.aggregate(a)

            except TypeError:
                pass
            else:
                results.append(new_res)

                # make sure we find a good name
                name = com.get_callable_name(a) or a
                keys.append(name)

    # multiples
    else:
        for index, col in enumerate(selected_obj):
            colg = obj._gotitem(col, ndim=1, subset=selected_obj.iloc[:, index])
            try:
                new_res = colg.aggregate(arg)
            except (TypeError, DataError):
                pass
            except ValueError as err:
                # cannot aggregate
                if "Must produce aggregated value" in str(err):
                    # raised directly in _aggregate_named
                    pass
                elif "no results" in str(err):
                    # raised directly in _aggregate_multiple_funcs
                    pass
                else:
                    raise
            else:
                results.append(new_res)
                keys.append(col)

    # if we are empty
    if not len(results):
        raise ValueError("no results")

    try:
        return concat(results, keys=keys, axis=1, sort=False)
    except TypeError as err:

        # we are concatting non-NDFrame objects,
        # e.g. a list of scalars

        from pandas import Series

        result = Series(results, index=keys, name=obj.name)
        if is_nested_object(result):
            raise ValueError(
                "cannot combine transform and aggregation operations"
            ) from err
        return result