Beispiel #1
0
 def all(
     self,
     *,
     axis: int | None = None,
     out=None,
     keepdims: bool = False,
     skipna: bool = True,
 ):
     nv.validate_all((), {"out": out, "keepdims": keepdims})
     result = nanops.nanall(self._ndarray, axis=axis, skipna=skipna)
     return self._wrap_reduction_result(axis, result)
Beispiel #2
0
    def all(self, axis=0, *args, **kwargs):
        """
        Tests whether all elements evaluate True

        Returns
        -------
        all : bool

        See Also
        --------
        numpy.all
        """
        nv.validate_all(args, kwargs)

        values = self.sp_values

        if len(values) != len(self) and not np.all(self.fill_value):
            return False

        return values.all()
Beispiel #3
0
    def all(self, axis=0, *args, **kwargs):
        """
        Tests whether all elements evaluate True

        Returns
        -------
        all : bool

        See Also
        --------
        numpy.all
        """
        nv.validate_all(args, kwargs)

        values = self.sp_values

        if len(values) != len(self) and not np.all(self.fill_value):
            return False

        return values.all()
Beispiel #4
0
    def all(self, *, skipna: bool = True, **kwargs):
        """
        Return whether all elements are truthy.

        Returns True unless there is at least one element that is falsey.
        By default, NAs are skipped. If ``skipna=False`` is specified and
        missing values are present, similar :ref:`Kleene logic <boolean.kleene>`
        is used as for logical operations.

        .. versionchanged:: 1.4.0

        Parameters
        ----------
        skipna : bool, default True
            Exclude NA values. If the entire array is NA and `skipna` is
            True, then the result will be True, as for an empty array.
            If `skipna` is False, the result will still be False if there is
            at least one element that is falsey, otherwise NA will be returned
            if there are NA's present.
        **kwargs : any, default None
            Additional keywords have no effect but might be accepted for
            compatibility with NumPy.

        Returns
        -------
        bool or :attr:`pandas.NA`

        See Also
        --------
        numpy.all : Numpy version of this method.
        BooleanArray.any : Return whether any element is truthy.

        Examples
        --------
        The result indicates whether all elements are truthy (and by default
        skips NAs):

        >>> pd.array([True, True, pd.NA]).all()
        True
        >>> pd.array([1, 1, pd.NA]).all()
        True
        >>> pd.array([True, False, pd.NA]).all()
        False
        >>> pd.array([], dtype="boolean").all()
        True
        >>> pd.array([pd.NA], dtype="boolean").all()
        True
        >>> pd.array([pd.NA], dtype="Float64").all()
        True

        With ``skipna=False``, the result can be NA if this is logically
        required (whether ``pd.NA`` is True or False influences the result):

        >>> pd.array([True, True, pd.NA]).all(skipna=False)
        <NA>
        >>> pd.array([1, 1, pd.NA]).all(skipna=False)
        <NA>
        >>> pd.array([True, False, pd.NA]).all(skipna=False)
        False
        >>> pd.array([1, 0, pd.NA]).all(skipna=False)
        False
        """
        kwargs.pop("axis", None)
        nv.validate_all((), kwargs)

        values = self._data.copy()
        # Argument 3 to "putmask" has incompatible type "object"; expected
        # "Union[_SupportsArray[dtype[Any]], _NestedSequence[
        # _SupportsArray[dtype[Any]]], bool, int, float, complex, str, bytes, _Neste
        # dSequence[Union[bool, int, float, complex, str, bytes]]]"  [arg-type]
        np.putmask(values, self._mask, self._truthy_value)  # type: ignore[arg-type]
        result = values.all()

        if skipna:
            return result
        else:
            if not result or len(self) == 0 or not self._mask.any():
                return result
            else:
                return self.dtype.na_value
    def all(self, *, skipna: bool = True, **kwargs):
        """
        Return whether all elements are True.

        Returns True unless there is at least one element that is False.
        By default, NAs are skipped. If ``skipna=False`` is specified and
        missing values are present, similar :ref:`Kleene logic <boolean.kleene>`
        is used as for logical operations.

        Parameters
        ----------
        skipna : bool, default True
            Exclude NA values. If the entire array is NA and `skipna` is
            True, then the result will be True, as for an empty array.
            If `skipna` is False, the result will still be False if there is
            at least one element that is False, otherwise NA will be returned
            if there are NA's present.
        **kwargs : any, default None
            Additional keywords have no effect but might be accepted for
            compatibility with NumPy.

        Returns
        -------
        bool or :attr:`pandas.NA`

        See Also
        --------
        numpy.all : Numpy version of this method.
        BooleanArray.any : Return whether any element is True.

        Examples
        --------
        The result indicates whether any element is True (and by default
        skips NAs):

        >>> pd.array([True, True, pd.NA]).all()
        True
        >>> pd.array([True, False, pd.NA]).all()
        False
        >>> pd.array([], dtype="boolean").all()
        True
        >>> pd.array([pd.NA], dtype="boolean").all()
        True

        With ``skipna=False``, the result can be NA if this is logically
        required (whether ``pd.NA`` is True or False influences the result):

        >>> pd.array([True, True, pd.NA]).all(skipna=False)
        <NA>
        >>> pd.array([True, False, pd.NA]).all(skipna=False)
        False
        """
        kwargs.pop("axis", None)
        nv.validate_all((), kwargs)

        values = self._data.copy()
        np.putmask(values, self._mask, True)
        result = values.all()

        if skipna:
            return result
        else:
            if not result or len(self) == 0 or not self._mask.any():
                return result
            else:
                return self.dtype.na_value
Beispiel #6
0
 def all(self, axis=None, out=None, keepdims=False, skipna=True):
     nv.validate_all((), dict(out=out, keepdims=keepdims))
     return nanops.nanall(self._ndarray, axis=axis, skipna=skipna)
Beispiel #7
0
 def all(self, axis=None, out=None, keepdims=False, skipna=True):
     nv.validate_all((), dict(out=out, keepdims=keepdims))
     return nanops.nanall(self._ndarray, axis=axis, skipna=skipna)
Beispiel #8
0
 def all(self, *, axis=None, out=None, keepdims=False, skipna=True):
     nv.validate_all((), dict(out=out, keepdims=keepdims))
     result = nanops.nanall(self._ndarray, axis=axis, skipna=skipna)
     return self._wrap_reduction_result(axis, result)