Beispiel #1
0
def interval_range(start=None,
                   end=None,
                   periods=None,
                   freq=None,
                   name=None,
                   closed="right"):
    """
    Return a fixed frequency IntervalIndex.

    Parameters
    ----------
    start : numeric or datetime-like, default None
        Left bound for generating intervals.
    end : numeric or datetime-like, default None
        Right bound for generating intervals.
    periods : int, default None
        Number of periods to generate.
    freq : numeric, str, or DateOffset, default None
        The length of each interval. Must be consistent with the type of start
        and end, e.g. 2 for numeric, or '5H' for datetime-like.  Default is 1
        for numeric and 'D' for datetime-like.
    name : str, default None
        Name of the resulting IntervalIndex.
    closed : {'left', 'right', 'both', 'neither'}, default 'right'
        Whether the intervals are closed on the left-side, right-side, both
        or neither.

    Returns
    -------
    IntervalIndex

    See Also
    --------
    IntervalIndex : An Index of intervals that are all closed on the same side.

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``IntervalIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end``, inclusively.

    To learn more about datetime-like frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    Numeric ``start`` and  ``end`` is supported.

    >>> pd.interval_range(start=0, end=5)
    IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
                  closed='right', dtype='interval[int64]')

    Additionally, datetime-like input is also supported.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   end=pd.Timestamp('2017-01-04'))
    IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
                   (2017-01-03, 2017-01-04]],
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``freq`` parameter specifies the frequency between the left and right.
    endpoints of the individual intervals within the ``IntervalIndex``.  For
    numeric ``start`` and ``end``, the frequency must also be numeric.

    >>> pd.interval_range(start=0, periods=4, freq=1.5)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
                  closed='right', dtype='interval[float64]')

    Similarly, for datetime-like ``start`` and ``end``, the frequency must be
    convertible to a DateOffset.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   periods=3, freq='MS')
    IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
                   (2017-03-01, 2017-04-01]],
                  closed='right', dtype='interval[datetime64[ns]]')

    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).

    >>> pd.interval_range(start=0, end=6, periods=4)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
              closed='right',
              dtype='interval[float64]')

    The ``closed`` parameter specifies which endpoints of the individual
    intervals within the ``IntervalIndex`` are closed.

    >>> pd.interval_range(end=5, periods=4, closed='both')
    IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
                  closed='both', dtype='interval[int64]')
    """
    start = maybe_box_datetimelike(start)
    end = maybe_box_datetimelike(end)
    endpoint = start if start is not None else end

    if freq is None and com.any_none(periods, start, end):
        freq = 1 if is_number(endpoint) else "D"

    if com.count_not_none(start, end, periods, freq) != 3:
        raise ValueError("Of the four parameters: start, end, periods, and "
                         "freq, exactly three must be specified")

    if not _is_valid_endpoint(start):
        raise ValueError(
            f"start must be numeric or datetime-like, got {start}")
    elif not _is_valid_endpoint(end):
        raise ValueError(f"end must be numeric or datetime-like, got {end}")

    if is_float(periods):
        periods = int(periods)
    elif not is_integer(periods) and periods is not None:
        raise TypeError(f"periods must be a number, got {periods}")

    if freq is not None and not is_number(freq):
        try:
            freq = to_offset(freq)
        except ValueError as err:
            raise ValueError(
                f"freq must be numeric or convertible to DateOffset, got {freq}"
            ) from err

    # verify type compatibility
    if not all([
            _is_type_compatible(start, end),
            _is_type_compatible(start, freq),
            _is_type_compatible(end, freq),
    ]):
        raise TypeError("start, end, freq need to be type compatible")

    # +1 to convert interval count to breaks count (n breaks = n-1 intervals)
    if periods is not None:
        periods += 1

    if is_number(endpoint):
        # force consistency between start/end/freq (lower end if freq skips it)
        if com.all_not_none(start, end, freq):
            end -= (end - start) % freq

        # compute the period/start/end if unspecified (at most one)
        if periods is None:
            periods = int((end - start) // freq) + 1
        elif start is None:
            start = end - (periods - 1) * freq
        elif end is None:
            end = start + (periods - 1) * freq

        breaks = np.linspace(start, end, periods)
        if all(is_integer(x) for x in com.not_none(start, end, freq)):
            # np.linspace always produces float output
            breaks = maybe_downcast_to_dtype(breaks, "int64")
    else:
        # delegate to the appropriate range function
        if isinstance(endpoint, Timestamp):
            breaks = date_range(start=start,
                                end=end,
                                periods=periods,
                                freq=freq)
        else:
            breaks = timedelta_range(start=start,
                                     end=end,
                                     periods=periods,
                                     freq=freq)

    return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
Beispiel #2
0
def timedelta_range(
    start=None, end=None, periods=None, freq=None, name=None, closed=None
) -> TimedeltaIndex:
    """
    Return a fixed frequency TimedeltaIndex, with day as the default
    frequency.

    Parameters
    ----------
    start : str or timedelta-like, default None
        Left bound for generating timedeltas.
    end : str or timedelta-like, default None
        Right bound for generating timedeltas.
    periods : int, default None
        Number of periods to generate.
    freq : str or DateOffset, default 'D'
        Frequency strings can have multiples, e.g. '5H'.
    name : str, default None
        Name of the resulting TimedeltaIndex.
    closed : str, default None
        Make the interval closed with respect to the given frequency to
        the 'left', 'right', or both sides (None).

    Returns
    -------
    rng : TimedeltaIndex

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end`` (closed on both sides).

    To learn more about the frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    >>> pd.timedelta_range(start='1 day', periods=4)
    TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq='D')

    The ``closed`` parameter specifies which endpoint is included.  The default
    behavior is to include both endpoints.

    >>> pd.timedelta_range(start='1 day', periods=4, closed='right')
    TimedeltaIndex(['2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq='D')

    The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
    Only fixed frequencies can be passed, non-fixed frequencies such as
    'M' (month end) will raise.

    >>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
    TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                    '1 days 18:00:00', '2 days 00:00:00'],
                   dtype='timedelta64[ns]', freq='6H')

    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).

    >>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
    TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
                    '5 days 00:00:00'],
                   dtype='timedelta64[ns]', freq=None)
    """
    if freq is None and com.any_none(periods, start, end):
        freq = "D"

    freq, _ = dtl.maybe_infer_freq(freq)
    tdarr = TimedeltaArray._generate_range(start, end, periods, freq, closed=closed)
    return TimedeltaIndex._simple_new(tdarr, name=name)
Beispiel #3
0
def date_range(
    start=None,
    end=None,
    periods=None,
    freq=None,
    tz=None,
    normalize: bool = False,
    name: Hashable = None,
    closed: Literal["left", "right"] | None | lib.NoDefault = lib.no_default,
    inclusive: IntervalClosedType | None = None,
    **kwargs,
) -> DatetimeIndex:
    """
    Return a fixed frequency DatetimeIndex.

    Returns the range of equally spaced time points (where the difference between any
    two adjacent points is specified by the given frequency) such that they all
    satisfy `start <[=] x <[=] end`, where the first one and the last one are, resp.,
    the first and last time points in that range that fall on the boundary of ``freq``
    (if given as a frequency string) or that are valid for ``freq`` (if given as a
    :class:`pandas.tseries.offsets.DateOffset`). (If exactly one of ``start``,
    ``end``, or ``freq`` is *not* specified, this missing parameter can be computed
    given ``periods``, the number of timesteps in the range. See the note below.)

    Parameters
    ----------
    start : str or datetime-like, optional
        Left bound for generating dates.
    end : str or datetime-like, optional
        Right bound for generating dates.
    periods : int, optional
        Number of periods to generate.
    freq : str or DateOffset, default 'D'
        Frequency strings can have multiples, e.g. '5H'. See
        :ref:`here <timeseries.offset_aliases>` for a list of
        frequency aliases.
    tz : str or tzinfo, optional
        Time zone name for returning localized DatetimeIndex, for example
        'Asia/Hong_Kong'. By default, the resulting DatetimeIndex is
        timezone-naive.
    normalize : bool, default False
        Normalize start/end dates to midnight before generating date range.
    name : str, default None
        Name of the resulting DatetimeIndex.
    closed : {None, 'left', 'right'}, optional
        Make the interval closed with respect to the given frequency to
        the 'left', 'right', or both sides (None, the default).

        .. deprecated:: 1.4.0
           Argument `closed` has been deprecated to standardize boundary inputs.
           Use `inclusive` instead, to set each bound as closed or open.
    inclusive : {"both", "neither", "left", "right"}, default "both"
        Include boundaries; Whether to set each bound as closed or open.

        .. versionadded:: 1.4.0
    **kwargs
        For compatibility. Has no effect on the result.

    Returns
    -------
    rng : DatetimeIndex

    See Also
    --------
    DatetimeIndex : An immutable container for datetimes.
    timedelta_range : Return a fixed frequency TimedeltaIndex.
    period_range : Return a fixed frequency PeriodIndex.
    interval_range : Return a fixed frequency IntervalIndex.

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``DatetimeIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end`` (closed on both sides).

    To learn more about the frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    **Specifying the values**

    The next four examples generate the same `DatetimeIndex`, but vary
    the combination of `start`, `end` and `periods`.

    Specify `start` and `end`, with the default daily frequency.

    >>> pd.date_range(start='1/1/2018', end='1/08/2018')
    DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                   '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
                  dtype='datetime64[ns]', freq='D')

    Specify `start` and `periods`, the number of periods (days).

    >>> pd.date_range(start='1/1/2018', periods=8)
    DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                   '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
                  dtype='datetime64[ns]', freq='D')

    Specify `end` and `periods`, the number of periods (days).

    >>> pd.date_range(end='1/1/2018', periods=8)
    DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',
                   '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
                  dtype='datetime64[ns]', freq='D')

    Specify `start`, `end`, and `periods`; the frequency is generated
    automatically (linearly spaced).

    >>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3)
    DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00',
                   '2018-04-27 00:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Other Parameters**

    Changed the `freq` (frequency) to ``'M'`` (month end frequency).

    >>> pd.date_range(start='1/1/2018', periods=5, freq='M')
    DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
                   '2018-05-31'],
                  dtype='datetime64[ns]', freq='M')

    Multiples are allowed

    >>> pd.date_range(start='1/1/2018', periods=5, freq='3M')
    DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
                   '2019-01-31'],
                  dtype='datetime64[ns]', freq='3M')

    `freq` can also be specified as an Offset object.

    >>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3))
    DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
                   '2019-01-31'],
                  dtype='datetime64[ns]', freq='3M')

    Specify `tz` to set the timezone.

    >>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo')
    DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00',
                   '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00',
                   '2018-01-05 00:00:00+09:00'],
                  dtype='datetime64[ns, Asia/Tokyo]', freq='D')

    `inclusive` controls whether to include `start` and `end` that are on the
    boundary. The default, "both", includes boundary points on either end.

    >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive="both")
    DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'],
                  dtype='datetime64[ns]', freq='D')

    Use ``inclusive='left'`` to exclude `end` if it falls on the boundary.

    >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='left')
    DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'],
                  dtype='datetime64[ns]', freq='D')

    Use ``inclusive='right'`` to exclude `start` if it falls on the boundary, and
    similarly ``inclusive='neither'`` will exclude both `start` and `end`.

    >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='right')
    DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'],
                  dtype='datetime64[ns]', freq='D')
    """
    if inclusive is not None and not isinstance(closed, lib.NoDefault):
        raise ValueError(
            "Deprecated argument `closed` cannot be passed"
            "if argument `inclusive` is not None"
        )
    elif not isinstance(closed, lib.NoDefault):
        warnings.warn(
            "Argument `closed` is deprecated in favor of `inclusive`.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
        if closed is None:
            inclusive = "both"
        elif closed in ("left", "right"):
            inclusive = closed
        else:
            raise ValueError(
                "Argument `closed` has to be either 'left', 'right' or None"
            )
    elif inclusive is None:
        inclusive = "both"

    if freq is None and com.any_none(periods, start, end):
        freq = "D"

    dtarr = DatetimeArray._generate_range(
        start=start,
        end=end,
        periods=periods,
        freq=freq,
        tz=tz,
        normalize=normalize,
        inclusive=inclusive,
        **kwargs,
    )
    return DatetimeIndex._simple_new(dtarr, name=name)
Beispiel #4
0
def date_range(
    start=None,
    end=None,
    periods=None,
    freq=None,
    tz=None,
    normalize=False,
    name=None,
    closed=None,
    **kwargs,
) -> DatetimeIndex:
    """
    Return a fixed frequency DatetimeIndex.

    Parameters
    ----------
    start : str or datetime-like, optional
        Left bound for generating dates.
    end : str or datetime-like, optional
        Right bound for generating dates.
    periods : int, optional
        Number of periods to generate.
    freq : str or DateOffset, default 'D'
        Frequency strings can have multiples, e.g. '5H'. See
        :ref:`here <timeseries.offset_aliases>` for a list of
        frequency aliases.
    tz : str or tzinfo, optional
        Time zone name for returning localized DatetimeIndex, for example
        'Asia/Hong_Kong'. By default, the resulting DatetimeIndex is
        timezone-naive.
    normalize : bool, default False
        Normalize start/end dates to midnight before generating date range.
    name : str, default None
        Name of the resulting DatetimeIndex.
    closed : {None, 'left', 'right'}, optional
        Make the interval closed with respect to the given frequency to
        the 'left', 'right', or both sides (None, the default).
    **kwargs
        For compatibility. Has no effect on the result.

    Returns
    -------
    rng : DatetimeIndex

    See Also
    --------
    DatetimeIndex : An immutable container for datetimes.
    timedelta_range : Return a fixed frequency TimedeltaIndex.
    period_range : Return a fixed frequency PeriodIndex.
    interval_range : Return a fixed frequency IntervalIndex.

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``DatetimeIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end`` (closed on both sides).

    To learn more about the frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    **Specifying the values**

    The next four examples generate the same `DatetimeIndex`, but vary
    the combination of `start`, `end` and `periods`.

    Specify `start` and `end`, with the default daily frequency.

    >>> pd.date_range(start='1/1/2018', end='1/08/2018')
    DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                   '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
                  dtype='datetime64[ns]', freq='D')

    Specify `start` and `periods`, the number of periods (days).

    >>> pd.date_range(start='1/1/2018', periods=8)
    DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                   '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
                  dtype='datetime64[ns]', freq='D')

    Specify `end` and `periods`, the number of periods (days).

    >>> pd.date_range(end='1/1/2018', periods=8)
    DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',
                   '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
                  dtype='datetime64[ns]', freq='D')

    Specify `start`, `end`, and `periods`; the frequency is generated
    automatically (linearly spaced).

    >>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3)
    DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00',
                   '2018-04-27 00:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Other Parameters**

    Changed the `freq` (frequency) to ``'M'`` (month end frequency).

    >>> pd.date_range(start='1/1/2018', periods=5, freq='M')
    DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
                   '2018-05-31'],
                  dtype='datetime64[ns]', freq='M')

    Multiples are allowed

    >>> pd.date_range(start='1/1/2018', periods=5, freq='3M')
    DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
                   '2019-01-31'],
                  dtype='datetime64[ns]', freq='3M')

    `freq` can also be specified as an Offset object.

    >>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3))
    DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
                   '2019-01-31'],
                  dtype='datetime64[ns]', freq='3M')

    Specify `tz` to set the timezone.

    >>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo')
    DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00',
                   '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00',
                   '2018-01-05 00:00:00+09:00'],
                  dtype='datetime64[ns, Asia/Tokyo]', freq='D')

    `closed` controls whether to include `start` and `end` that are on the
    boundary. The default includes boundary points on either end.

    >>> pd.date_range(start='2017-01-01', end='2017-01-04', closed=None)
    DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'],
                  dtype='datetime64[ns]', freq='D')

    Use ``closed='left'`` to exclude `end` if it falls on the boundary.

    >>> pd.date_range(start='2017-01-01', end='2017-01-04', closed='left')
    DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'],
                  dtype='datetime64[ns]', freq='D')

    Use ``closed='right'`` to exclude `start` if it falls on the boundary.

    >>> pd.date_range(start='2017-01-01', end='2017-01-04', closed='right')
    DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'],
                  dtype='datetime64[ns]', freq='D')
    """

    if freq is None and com.any_none(periods, start, end):
        freq = "D"

    dtarr = DatetimeArray._generate_range(
        start=start,
        end=end,
        periods=periods,
        freq=freq,
        tz=tz,
        normalize=normalize,
        closed=closed,
        **kwargs,
    )
    return DatetimeIndex._simple_new(dtarr, name=name)
Beispiel #5
0
def test_any_none():
    assert com.any_none(1, 2, 3, None)
    assert not com.any_none(1, 2, 3, 4)