Beispiel #1
0
def arrays_to_mgr(
    arrays,
    columns: Index,
    index,
    *,
    dtype: DtypeObj | None = None,
    verify_integrity: bool = True,
    typ: str | None = None,
    consolidate: bool = True,
) -> Manager:
    """
    Segregate Series based on type and coerce into matrices.

    Needs to handle a lot of exceptional cases.
    """
    if verify_integrity:
        # figure out the index, if necessary
        if index is None:
            index = _extract_index(arrays)
        else:
            index = ensure_index(index)

        # don't force copy because getting jammed in an ndarray anyway
        arrays = _homogenize(arrays, index, dtype)
        # _homogenize ensures
        #  - all(len(x) == len(index) for x in arrays)
        #  - all(x.ndim == 1 for x in arrays)
        #  - all(isinstance(x, (np.ndarray, ExtensionArray)) for x in arrays)
        #  - all(type(x) is not PandasArray for x in arrays)

    else:
        index = ensure_index(index)
        arrays = [extract_array(x, extract_numpy=True) for x in arrays]

        # Reached via DataFrame._from_arrays; we do validation here
        for arr in arrays:
            if (
                not isinstance(arr, (np.ndarray, ExtensionArray))
                or arr.ndim != 1
                or len(arr) != len(index)
            ):
                raise ValueError(
                    "Arrays must be 1-dimensional np.ndarray or ExtensionArray "
                    "with length matching len(index)"
                )

    columns = ensure_index(columns)
    if len(columns) != len(arrays):
        raise ValueError("len(arrays) must match len(columns)")

    # from BlockManager perspective
    axes = [columns, index]

    if typ == "block":
        return create_block_manager_from_column_arrays(
            arrays, axes, consolidate=consolidate
        )
    elif typ == "array":
        return ArrayManager(arrays, [index, columns])
    else:
        raise ValueError(f"'typ' needs to be one of {{'block', 'array'}}, got '{typ}'")
Beispiel #2
0
def _extract_index(data) -> Index:
    """
    Try to infer an Index from the passed data, raise ValueError on failure.
    """
    index = None
    if len(data) == 0:
        index = Index([])
    else:
        raw_lengths = []
        indexes: list[list[Hashable] | Index] = []

        have_raw_arrays = False
        have_series = False
        have_dicts = False

        for val in data:
            if isinstance(val, ABCSeries):
                have_series = True
                indexes.append(val.index)
            elif isinstance(val, dict):
                have_dicts = True
                indexes.append(list(val.keys()))
            elif is_list_like(val) and getattr(val, "ndim", 1) == 1:
                have_raw_arrays = True
                raw_lengths.append(len(val))
            elif isinstance(val, np.ndarray) and val.ndim > 1:
                raise ValueError("Per-column arrays must each be 1-dimensional")

        if not indexes and not raw_lengths:
            raise ValueError("If using all scalar values, you must pass an index")

        elif have_series:
            index = union_indexes(indexes)
        elif have_dicts:
            index = union_indexes(indexes, sort=False)

        if have_raw_arrays:
            lengths = list(set(raw_lengths))
            if len(lengths) > 1:
                raise ValueError("All arrays must be of the same length")

            if have_dicts:
                raise ValueError(
                    "Mixing dicts with non-Series may lead to ambiguous ordering."
                )

            if have_series:
                assert index is not None  # for mypy
                if lengths[0] != len(index):
                    msg = (
                        f"array length {lengths[0]} does not match index "
                        f"length {len(index)}"
                    )
                    raise ValueError(msg)
            else:
                index = default_index(lengths[0])

    # error: Argument 1 to "ensure_index" has incompatible type "Optional[Index]";
    # expected "Union[Union[Union[ExtensionArray, ndarray], Index, Series],
    # Sequence[Any]]"
    return ensure_index(index)  # type: ignore[arg-type]
Beispiel #3
0
def to_arrays(
    data, columns: Index | None, dtype: DtypeObj | None = None
) -> tuple[list[ArrayLike], Index]:
    """
    Return list of arrays, columns.

    Returns
    -------
    list[ArrayLike]
        These will become columns in a DataFrame.
    Index
        This will become frame.columns.

    Notes
    -----
    Ensures that len(result_arrays) == len(result_index).
    """
    if isinstance(data, ABCDataFrame):
        # see test_from_records_with_index_data, test_from_records_bad_index_column
        if columns is not None:
            arrays = [
                data._ixs(i, axis=1).values
                for i, col in enumerate(data.columns)
                if col in columns
            ]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            if data.dtype.names is not None:
                # i.e. numpy structured array
                columns = ensure_index(data.dtype.names)
                arrays = [data[name] for name in columns]

                if len(data) == 0:
                    # GH#42456 the indexing above results in list of 2D ndarrays
                    # TODO: is that an issue with numpy?
                    for i, arr in enumerate(arrays):
                        if arr.ndim == 2:
                            arrays[i] = arr[:, 0]

                return arrays, columns
        return [], ensure_index([])

    elif isinstance(data[0], Categorical):
        # GH#38845 deprecate special case
        warnings.warn(
            "The behavior of DataFrame([categorical, ...]) is deprecated and "
            "in a future version will be changed to match the behavior of "
            "DataFrame([any_listlike, ...]). "
            "To retain the old behavior, pass as a dictionary "
            "DataFrame({col: categorical, ..})",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
        if columns is None:
            columns = default_index(len(data))
        elif len(columns) > len(data):
            raise ValueError("len(columns) > len(data)")
        elif len(columns) < len(data):
            # doing this here is akin to a pre-emptive reindex
            data = data[: len(columns)]
        return data, columns

    elif isinstance(data, np.ndarray) and data.dtype.names is not None:
        # e.g. recarray
        columns = Index(list(data.dtype.names))
        arrays = [data[k] for k in columns]
        return arrays, columns

    if isinstance(data[0], (list, tuple)):
        arr = _list_to_arrays(data)
    elif isinstance(data[0], abc.Mapping):
        arr, columns = _list_of_dict_to_arrays(data, columns)
    elif isinstance(data[0], ABCSeries):
        arr, columns = _list_of_series_to_arrays(data, columns)
    else:
        # last ditch effort
        data = [tuple(x) for x in data]
        arr = _list_to_arrays(data)

    content, columns = _finalize_columns_and_data(arr, columns, dtype)
    return content, columns
Beispiel #4
0
def ndarray_to_mgr(
    values, index, columns, dtype: DtypeObj | None, copy: bool, typ: str
) -> Manager:
    # used in DataFrame.__init__
    # input must be a ndarray, list, Series, Index, ExtensionArray

    if isinstance(values, ABCSeries):
        if columns is None:
            if values.name is not None:
                columns = Index([values.name])
        if index is None:
            index = values.index
        else:
            values = values.reindex(index)

        # zero len case (GH #2234)
        if not len(values) and columns is not None and len(columns):
            values = np.empty((0, 1), dtype=object)

    # if the array preparation does a copy -> avoid this for ArrayManager,
    # since the copy is done on conversion to 1D arrays
    copy_on_sanitize = False if typ == "array" else copy

    vdtype = getattr(values, "dtype", None)
    if is_1d_only_ea_dtype(vdtype) or is_1d_only_ea_dtype(dtype):
        # GH#19157

        if isinstance(values, (np.ndarray, ExtensionArray)) and values.ndim > 1:
            # GH#12513 a EA dtype passed with a 2D array, split into
            #  multiple EAs that view the values
            # error: No overload variant of "__getitem__" of "ExtensionArray"
            # matches argument type "Tuple[slice, int]"
            values = [
                values[:, n]  # type: ignore[call-overload]
                for n in range(values.shape[1])
            ]
        else:
            values = [values]

        if columns is None:
            columns = Index(range(len(values)))
        else:
            columns = ensure_index(columns)

        return arrays_to_mgr(values, columns, index, dtype=dtype, typ=typ)

    elif is_extension_array_dtype(vdtype) and not is_1d_only_ea_dtype(vdtype):
        # i.e. Datetime64TZ, PeriodDtype
        values = extract_array(values, extract_numpy=True)
        if copy:
            values = values.copy()
        if values.ndim == 1:
            values = values.reshape(-1, 1)

    else:
        # by definition an array here
        # the dtypes will be coerced to a single dtype
        values = _prep_ndarraylike(values, copy=copy_on_sanitize)

    if dtype is not None and not is_dtype_equal(values.dtype, dtype):
        # GH#40110 see similar check inside sanitize_array
        rcf = not (is_integer_dtype(dtype) and values.dtype.kind == "f")

        values = sanitize_array(
            values,
            None,
            dtype=dtype,
            copy=copy_on_sanitize,
            raise_cast_failure=rcf,
            allow_2d=True,
        )

    # _prep_ndarraylike ensures that values.ndim == 2 at this point
    index, columns = _get_axes(
        values.shape[0], values.shape[1], index=index, columns=columns
    )

    _check_values_indices_shape_match(values, index, columns)

    if typ == "array":

        if issubclass(values.dtype.type, str):
            values = np.array(values, dtype=object)

        if dtype is None and is_object_dtype(values.dtype):
            arrays = [
                ensure_wrapped_if_datetimelike(
                    maybe_infer_to_datetimelike(values[:, i])
                )
                for i in range(values.shape[1])
            ]
        else:
            if is_datetime_or_timedelta_dtype(values.dtype):
                values = ensure_wrapped_if_datetimelike(values)
            arrays = [values[:, i] for i in range(values.shape[1])]

        if copy:
            arrays = [arr.copy() for arr in arrays]

        return ArrayManager(arrays, [index, columns], verify_integrity=False)

    values = values.T

    # if we don't have a dtype specified, then try to convert objects
    # on the entire block; this is to convert if we have datetimelike's
    # embedded in an object type
    if dtype is None and is_object_dtype(values.dtype):
        obj_columns = list(values)
        maybe_datetime = [maybe_infer_to_datetimelike(x) for x in obj_columns]
        # don't convert (and copy) the objects if no type inference occurs
        if any(x is not y for x, y in zip(obj_columns, maybe_datetime)):
            dvals_list = [ensure_block_shape(dval, 2) for dval in maybe_datetime]
            block_values = [
                new_block_2d(dvals_list[n], placement=BlockPlacement(n))
                for n in range(len(dvals_list))
            ]
        else:
            bp = BlockPlacement(slice(len(columns)))
            nb = new_block_2d(values, placement=bp)
            block_values = [nb]
    else:
        bp = BlockPlacement(slice(len(columns)))
        nb = new_block_2d(values, placement=bp)
        block_values = [nb]

    if len(columns) == 0:
        block_values = []

    return create_block_manager_from_blocks(
        block_values, [columns, index], verify_integrity=False
    )
Beispiel #5
0
def dict_to_mgr(
    data: dict,
    index,
    columns,
    *,
    dtype: DtypeObj | None = None,
    typ: str = "block",
    copy: bool = True,
) -> Manager:
    """
    Segregate Series based on type and coerce into matrices.
    Needs to handle a lot of exceptional cases.

    Used in DataFrame.__init__
    """
    arrays: Sequence[Any] | Series

    if columns is not None:
        from pandas.core.series import Series

        arrays = Series(data, index=columns, dtype=object)
        missing = arrays.isna()
        if index is None:
            # GH10856
            # raise ValueError if only scalars in dict
            index = _extract_index(arrays[~missing])
        else:
            index = ensure_index(index)

        # no obvious "empty" int column
        if missing.any() and not is_integer_dtype(dtype):
            nan_dtype: DtypeObj

            if dtype is not None:
                # calling sanitize_array ensures we don't mix-and-match
                #  NA dtypes
                midxs = missing.values.nonzero()[0]
                for i in midxs:
                    arr = sanitize_array(arrays.iat[i], index, dtype=dtype)
                    arrays.iat[i] = arr
            else:
                # GH#1783
                nan_dtype = np.dtype("object")
                val = construct_1d_arraylike_from_scalar(np.nan, len(index), nan_dtype)
                nmissing = missing.sum()
                if copy:
                    rhs = [val] * nmissing
                else:
                    # GH#45369
                    rhs = [val.copy() for _ in range(nmissing)]
                arrays.loc[missing] = rhs

        arrays = list(arrays)
        columns = ensure_index(columns)

    else:
        keys = list(data.keys())
        columns = Index(keys)
        arrays = [com.maybe_iterable_to_list(data[k]) for k in keys]
        arrays = [arr if not isinstance(arr, Index) else arr._data for arr in arrays]

    if copy:
        if typ == "block":
            # We only need to copy arrays that will not get consolidated, i.e.
            #  only EA arrays
            arrays = [x.copy() if isinstance(x, ExtensionArray) else x for x in arrays]
        else:
            # dtype check to exclude e.g. range objects, scalars
            arrays = [x.copy() if hasattr(x, "dtype") else x for x in arrays]

    return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
Beispiel #6
0
def dict_to_mgr(
    data: dict,
    index,
    columns,
    *,
    dtype: DtypeObj | None = None,
    typ: str = "block",
    copy: bool = True,
) -> Manager:
    """
    Segregate Series based on type and coerce into matrices.
    Needs to handle a lot of exceptional cases.

    Used in DataFrame.__init__
    """
    arrays: Sequence[Any] | Series

    if columns is not None:
        from pandas.core.series import Series

        arrays = Series(data, index=columns, dtype=object)
        missing = arrays.isna()
        if index is None:
            # GH10856
            # raise ValueError if only scalars in dict
            index = _extract_index(arrays[~missing])
        else:
            index = ensure_index(index)

        # no obvious "empty" int column
        if missing.any() and not is_integer_dtype(dtype):
            nan_dtype: DtypeObj

            if dtype is None or (isinstance(dtype, np.dtype)
                                 and np.issubdtype(dtype, np.flexible)):
                # GH#1783
                nan_dtype = np.dtype("object")
            else:
                nan_dtype = dtype
            val = construct_1d_arraylike_from_scalar(np.nan, len(index),
                                                     nan_dtype)
            arrays.loc[missing] = [val] * missing.sum()

        arrays = list(arrays)
        columns = ensure_index(columns)

    else:
        keys = list(data.keys())
        columns = Index(keys)
        arrays = [com.maybe_iterable_to_list(data[k]) for k in keys]
        # GH#24096 need copy to be deep for datetime64tz case
        # TODO: See if we can avoid these copies
        arrays = [
            arr if not isinstance(arr, Index) else arr._data for arr in arrays
        ]
        arrays = [
            arr if not is_datetime64tz_dtype(arr) else arr.copy()
            for arr in arrays
        ]

    if copy:
        # arrays_to_mgr (via form_blocks) won't make copies for EAs
        # dtype attr check to exclude EADtype-castable strs
        arrays = [
            x if not hasattr(x, "dtype")
            or not isinstance(x.dtype, ExtensionDtype) else x.copy()
            for x in arrays
        ]
        # TODO: can we get rid of the dt64tz special case above?

    return arrays_to_mgr(arrays,
                         columns,
                         index,
                         dtype=dtype,
                         typ=typ,
                         consolidate=copy)
Beispiel #7
0
def _make_concat_multiindex(indexes,
                            keys,
                            levels=None,
                            names=None) -> MultiIndex:

    if (levels is None
            and isinstance(keys[0], tuple)) or (levels is not None
                                                and len(levels) > 1):
        zipped = list(zip(*keys))
        if names is None:
            names = [None] * len(zipped)

        if levels is None:
            _, levels = factorize_from_iterables(zipped)
        else:
            levels = [ensure_index(x) for x in levels]
    else:
        zipped = [keys]
        if names is None:
            names = [None]

        if levels is None:
            levels = [ensure_index(keys)]
        else:
            levels = [ensure_index(x) for x in levels]

    if not all_indexes_same(indexes):
        codes_list = []

        # things are potentially different sizes, so compute the exact codes
        # for each level and pass those to MultiIndex.from_arrays

        for hlevel, level in zip(zipped, levels):
            to_concat = []
            for key, index in zip(hlevel, indexes):
                # Find matching codes, include matching nan values as equal.
                mask = (isna(level) & isna(key)) | (level == key)
                if not mask.any():
                    raise ValueError(f"Key {key} not in level {level}")
                i = np.nonzero(mask)[0][0]

                to_concat.append(np.repeat(i, len(index)))
            codes_list.append(np.concatenate(to_concat))

        concat_index = _concat_indexes(indexes)

        # these go at the end
        if isinstance(concat_index, MultiIndex):
            levels.extend(concat_index.levels)
            codes_list.extend(concat_index.codes)
        else:
            codes, categories = factorize_from_iterable(concat_index)
            levels.append(categories)
            codes_list.append(codes)

        if len(names) == len(levels):
            names = list(names)
        else:
            # make sure that all of the passed indices have the same nlevels
            if not len({idx.nlevels for idx in indexes}) == 1:
                raise AssertionError(
                    "Cannot concat indices that do not have the same number of levels"
                )

            # also copies
            names = names + get_consensus_names(indexes)

        return MultiIndex(levels=levels,
                          codes=codes_list,
                          names=names,
                          verify_integrity=False)

    new_index = indexes[0]
    n = len(new_index)
    kpieces = len(indexes)

    # also copies
    new_names = list(names)
    new_levels = list(levels)

    # construct codes
    new_codes = []

    # do something a bit more speedy

    for hlevel, level in zip(zipped, levels):
        hlevel = ensure_index(hlevel)
        mapped = level.get_indexer(hlevel)

        mask = mapped == -1
        if mask.any():
            raise ValueError(
                f"Values not found in passed level: {hlevel[mask]!s}")

        new_codes.append(np.repeat(mapped, n))

    if isinstance(new_index, MultiIndex):
        new_levels.extend(new_index.levels)
        new_codes.extend([np.tile(lab, kpieces) for lab in new_index.codes])
    else:
        new_levels.append(new_index)
        new_codes.append(np.tile(np.arange(n), kpieces))

    if len(new_names) < len(new_levels):
        new_names.extend(new_index.names)

    return MultiIndex(levels=new_levels,
                      codes=new_codes,
                      names=new_names,
                      verify_integrity=False)
Beispiel #8
0
def to_arrays(data,
              columns: Index | None,
              dtype: DtypeObj | None = None) -> tuple[list[ArrayLike], Index]:
    """
    Return list of arrays, columns.
    """
    if isinstance(data, ABCDataFrame):
        # see test_from_records_with_index_data, test_from_records_bad_index_column
        if columns is not None:
            arrays = [
                data._ixs(i, axis=1).values
                for i, col in enumerate(data.columns) if col in columns
            ]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            if data.dtype.names is not None:
                # i.e. numpy structured array
                columns = ensure_index(data.dtype.names)
                arrays = [data[name] for name in columns]
                return arrays, columns
        return [], ensure_index([])

    elif isinstance(data[0], Categorical):
        # GH#38845 deprecate special case
        warnings.warn(
            "The behavior of DataFrame([categorical, ...]) is deprecated and "
            "in a future version will be changed to match the behavior of "
            "DataFrame([any_listlike, ...]). "
            "To retain the old behavior, pass as a dictionary "
            "DataFrame({col: categorical, ..})",
            FutureWarning,
            stacklevel=4,
        )
        if columns is None:
            columns = ibase.default_index(len(data))
        return data, columns

    elif isinstance(data, np.ndarray) and data.dtype.names is not None:
        # e.g. recarray
        columns = Index(list(data.dtype.names))
        arrays = [data[k] for k in columns]
        return arrays, columns

    if isinstance(data[0], (list, tuple)):
        arr = _list_to_arrays(data)
    elif isinstance(data[0], abc.Mapping):
        arr, columns = _list_of_dict_to_arrays(data, columns)
    elif isinstance(data[0], ABCSeries):
        arr, columns = _list_of_series_to_arrays(data, columns)
    else:
        # last ditch effort
        data = [tuple(x) for x in data]
        arr = _list_to_arrays(data)

    content, columns = _finalize_columns_and_data(arr, columns, dtype)
    return content, columns
Beispiel #9
0
def ndarray_to_mgr(values, index, columns, dtype: DtypeObj | None, copy: bool,
                   typ: str) -> Manager:
    # used in DataFrame.__init__
    # input must be a ndarray, list, Series, Index, ExtensionArray

    if isinstance(values, ABCSeries):
        if columns is None:
            if values.name is not None:
                columns = Index([values.name])
        if index is None:
            index = values.index
        else:
            values = values.reindex(index)

        # zero len case (GH #2234)
        if not len(values) and columns is not None and len(columns):
            values = np.empty((0, 1), dtype=object)

    vdtype = getattr(values, "dtype", None)
    if is_1d_only_ea_dtype(vdtype) or isinstance(dtype, ExtensionDtype):
        # GH#19157

        if isinstance(values, np.ndarray) and values.ndim > 1:
            # GH#12513 a EA dtype passed with a 2D array, split into
            #  multiple EAs that view the values
            values = [values[:, n] for n in range(values.shape[1])]
        else:
            values = [values]

        if columns is None:
            columns = Index(range(len(values)))
        else:
            columns = ensure_index(columns)

        return arrays_to_mgr(values,
                             columns,
                             index,
                             columns,
                             dtype=dtype,
                             typ=typ)

    elif is_extension_array_dtype(vdtype) and not is_1d_only_ea_dtype(vdtype):
        # i.e. Datetime64TZ
        values = extract_array(values, extract_numpy=True)
        if copy:
            values = values.copy()
        if values.ndim == 1:
            values = values.reshape(-1, 1)

    else:
        # by definition an array here
        # the dtypes will be coerced to a single dtype
        values = _prep_ndarray(values, copy=copy)

    if dtype is not None and not is_dtype_equal(values.dtype, dtype):
        shape = values.shape
        flat = values.ravel()

        # GH#40110 see similar check inside sanitize_array
        rcf = not (is_integer_dtype(dtype) and values.dtype.kind == "f")

        values = sanitize_array(flat,
                                None,
                                dtype=dtype,
                                copy=copy,
                                raise_cast_failure=rcf)

        values = values.reshape(shape)

    # _prep_ndarray ensures that values.ndim == 2 at this point
    index, columns = _get_axes(values.shape[0],
                               values.shape[1],
                               index=index,
                               columns=columns)

    _check_values_indices_shape_match(values, index, columns)

    if typ == "array":

        if issubclass(values.dtype.type, str):
            values = np.array(values, dtype=object)

        if dtype is None and is_object_dtype(values.dtype):
            arrays = [
                ensure_wrapped_if_datetimelike(
                    maybe_infer_to_datetimelike(values[:, i].copy()))
                for i in range(values.shape[1])
            ]
        else:
            if is_datetime_or_timedelta_dtype(values.dtype):
                values = ensure_wrapped_if_datetimelike(values)
            arrays = [values[:, i].copy() for i in range(values.shape[1])]

        return ArrayManager(arrays, [index, columns], verify_integrity=False)

    values = values.T

    # if we don't have a dtype specified, then try to convert objects
    # on the entire block; this is to convert if we have datetimelike's
    # embedded in an object type
    if dtype is None and is_object_dtype(values.dtype):
        obj_columns = list(values)
        maybe_datetime = [maybe_infer_to_datetimelike(x) for x in obj_columns]
        # don't convert (and copy) the objects if no type inference occurs
        if any(x is not y for x, y in zip(obj_columns, maybe_datetime)):
            dvals_list = [
                ensure_block_shape(dval, 2) for dval in maybe_datetime
            ]
            block_values = [
                new_block(dvals_list[n], placement=n, ndim=2)
                for n in range(len(dvals_list))
            ]
        else:
            nb = new_block(values, placement=slice(len(columns)), ndim=2)
            block_values = [nb]
    else:
        nb = new_block(values, placement=slice(len(columns)), ndim=2)
        block_values = [nb]

    if len(columns) == 0:
        block_values = []

    return create_block_manager_from_blocks(block_values, [columns, index])
Beispiel #10
0
def ndarray_to_mgr(values, index, columns, dtype: DtypeObj | None, copy: bool,
                   typ: str) -> Manager:
    # used in DataFrame.__init__
    # input must be a ndarray, list, Series, Index, ExtensionArray

    if isinstance(values, ABCSeries):
        if columns is None:
            if values.name is not None:
                columns = Index([values.name])
        if index is None:
            index = values.index
        else:
            values = values.reindex(index)

        # zero len case (GH #2234)
        if not len(values) and columns is not None and len(columns):
            values = np.empty((0, 1), dtype=object)

    vdtype = getattr(values, "dtype", None)
    if is_1d_only_ea_dtype(vdtype) or isinstance(dtype, ExtensionDtype):
        # GH#19157

        if isinstance(values, np.ndarray) and values.ndim > 1:
            # GH#12513 a EA dtype passed with a 2D array, split into
            #  multiple EAs that view the values
            values = [values[:, n] for n in range(values.shape[1])]
        else:
            values = [values]

        if columns is None:
            columns = Index(range(len(values)))
        else:
            columns = ensure_index(columns)

        return arrays_to_mgr(values,
                             columns,
                             index,
                             columns,
                             dtype=dtype,
                             typ=typ)

    elif is_extension_array_dtype(vdtype) and not is_1d_only_ea_dtype(vdtype):
        # i.e. Datetime64TZ
        values = extract_array(values, extract_numpy=True)
        if copy:
            values = values.copy()
        if values.ndim == 1:
            values = values.reshape(-1, 1)

    else:
        # by definition an array here
        # the dtypes will be coerced to a single dtype
        values = _prep_ndarray(values, copy=copy)

    if dtype is not None and not is_dtype_equal(values.dtype, dtype):
        shape = values.shape
        flat = values.ravel()

        if not is_integer_dtype(dtype):
            # TODO: skipping integer_dtype is needed to keep the tests passing,
            #  not clear it is correct
            # Note: we really only need _try_cast, but keeping to exposed funcs
            values = sanitize_array(flat,
                                    None,
                                    dtype=dtype,
                                    copy=copy,
                                    raise_cast_failure=True)
        else:
            try:
                values = construct_1d_ndarray_preserving_na(flat,
                                                            dtype=dtype,
                                                            copy=False)
            except IntCastingNaNError:
                # following Series, we ignore the dtype and retain floating
                # values instead of casting nans to meaningless ints
                pass

        values = values.reshape(shape)

    # _prep_ndarray ensures that values.ndim == 2 at this point
    index, columns = _get_axes(values.shape[0],
                               values.shape[1],
                               index=index,
                               columns=columns)

    _check_values_indices_shape_match(values, index, columns)

    if typ == "array":

        if issubclass(values.dtype.type, str):
            values = np.array(values, dtype=object)

        if dtype is None and is_object_dtype(values.dtype):
            arrays = [
                ensure_wrapped_if_datetimelike(
                    maybe_infer_to_datetimelike(values[:, i].copy()))
                for i in range(values.shape[1])
            ]
        else:
            if is_datetime_or_timedelta_dtype(values.dtype):
                values = ensure_wrapped_if_datetimelike(values)
            arrays = [values[:, i].copy() for i in range(values.shape[1])]

        return ArrayManager(arrays, [index, columns], verify_integrity=False)

    values = values.T

    # if we don't have a dtype specified, then try to convert objects
    # on the entire block; this is to convert if we have datetimelike's
    # embedded in an object type
    if dtype is None and is_object_dtype(values.dtype):

        if values.ndim == 2 and values.shape[0] != 1:
            # transpose and separate blocks

            dtlike_vals = [maybe_infer_to_datetimelike(row) for row in values]
            dvals_list = [ensure_block_shape(dval, 2) for dval in dtlike_vals]

            # TODO: What about re-joining object columns?
            block_values = [
                new_block(dvals_list[n], placement=n, ndim=2)
                for n in range(len(dvals_list))
            ]

        else:
            datelike_vals = maybe_infer_to_datetimelike(values)
            nb = new_block(datelike_vals,
                           placement=slice(len(columns)),
                           ndim=2)
            block_values = [nb]
    else:
        nb = new_block(values, placement=slice(len(columns)), ndim=2)
        block_values = [nb]

    if len(columns) == 0:
        block_values = []

    return create_block_manager_from_blocks(block_values, [columns, index])
Beispiel #11
0
def to_arrays(
        data,
        columns: Optional[Index],
        dtype: Optional[DtypeObj] = None) -> Tuple[List[ArrayLike], Index]:
    """
    Return list of arrays, columns.
    """
    if isinstance(data, ABCDataFrame):
        if columns is not None:
            arrays = [
                data._ixs(i, axis=1).values
                for i, col in enumerate(data.columns) if col in columns
            ]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            # error: Incompatible types in assignment (expression has type
            # "Optional[Tuple[str, ...]]", variable has type "Optional[Index]")
            columns = data.dtype.names  # type: ignore[assignment]
            if columns is not None:
                # i.e. numpy structured array
                arrays = [data[name] for name in columns]
                return arrays, ensure_index(columns)
        return [], ensure_index([])

    elif isinstance(data[0], Categorical):
        if columns is None:
            columns = ibase.default_index(len(data))
        return data, columns

    elif isinstance(data, np.ndarray) and data.dtype.names is not None:
        # e.g. recarray
        columns = Index(list(data.dtype.names))
        arrays = [data[k] for k in columns]
        return arrays, columns

    if isinstance(data[0], (list, tuple)):
        content = _list_to_arrays(data)
    elif isinstance(data[0], abc.Mapping):
        content, columns = _list_of_dict_to_arrays(data, columns)
    elif isinstance(data[0], ABCSeries):
        content, columns = _list_of_series_to_arrays(data, columns)
    else:
        # last ditch effort
        data = [tuple(x) for x in data]
        content = _list_to_arrays(data)

    # error: Incompatible types in assignment (expression has type "List[ndarray]",
    # variable has type "List[Union[Union[str, int, float, bool], Union[Any, Any, Any,
    # Any]]]")
    content, columns = _finalize_columns_and_data(  # type: ignore[assignment]
        content, columns, dtype)
    # error: Incompatible return value type (got "Tuple[ndarray, Index]", expected
    # "Tuple[List[ExtensionArray], Index]")
    # error: Incompatible return value type (got "Tuple[ndarray, Index]", expected
    # "Tuple[List[ndarray], Index]")
    return content, columns  # type: ignore[return-value]
Beispiel #12
0
def dict_to_mgr(data: Dict, index, columns, dtype: Optional[DtypeObj],
                typ: str) -> Manager:
    """
    Segregate Series based on type and coerce into matrices.
    Needs to handle a lot of exceptional cases.

    Used in DataFrame.__init__
    """
    arrays: Union[Sequence[Any], Series]

    if columns is not None:
        from pandas.core.series import Series

        arrays = Series(data, index=columns, dtype=object)
        data_names = arrays.index

        missing = arrays.isna()
        if index is None:
            # GH10856
            # raise ValueError if only scalars in dict
            index = extract_index(arrays[~missing])
        else:
            index = ensure_index(index)

        # no obvious "empty" int column
        if missing.any() and not is_integer_dtype(dtype):
            if dtype is None or (
                    not is_extension_array_dtype(dtype)
                    # error: Argument 1 to "issubdtype" has incompatible type
                    # "Union[dtype, ExtensionDtype]"; expected "Union[dtype, None,
                    # type, _SupportsDtype, str, Tuple[Any, int], Tuple[Any,
                    # Union[int, Sequence[int]]], List[Any], _DtypeDict, Tuple[Any,
                    # Any]]"
                    and np.issubdtype(dtype,
                                      np.flexible)  # type: ignore[arg-type]
            ):
                # GH#1783

                # error: Value of type variable "_DTypeScalar" of "dtype" cannot be
                # "object"
                nan_dtype = np.dtype(object)  # type: ignore[type-var]
            else:
                # error: Incompatible types in assignment (expression has type
                # "Union[dtype, ExtensionDtype]", variable has type "dtype")
                nan_dtype = dtype  # type: ignore[assignment]
            val = construct_1d_arraylike_from_scalar(np.nan, len(index),
                                                     nan_dtype)
            arrays.loc[missing] = [val] * missing.sum()

    else:
        keys = list(data.keys())
        columns = data_names = Index(keys)
        arrays = [com.maybe_iterable_to_list(data[k]) for k in keys]
        # GH#24096 need copy to be deep for datetime64tz case
        # TODO: See if we can avoid these copies
        arrays = [
            arr if not isinstance(arr, ABCIndex) else arr._data
            for arr in arrays
        ]
        arrays = [
            arr if not is_datetime64tz_dtype(arr) else arr.copy()
            for arr in arrays
        ]
    return arrays_to_mgr(arrays,
                         data_names,
                         index,
                         columns,
                         dtype=dtype,
                         typ=typ)