Beispiel #1
0
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          raise_on_error=True, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, ABCSeries)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notnull(xrav) & notnull(yrav)
                xrav = xrav[mask]
                yrav = yrav[mask]
                if np.prod(xrav.shape) and np.prod(yrav.shape):
                    result[mask] = op(xrav, yrav)
            elif hasattr(x, 'size'):
                result = np.empty(x.size, dtype=x.dtype)
                mask = notnull(xrav)
                xrav = xrav[mask]
                if np.prod(xrav.shape):
                    result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between "
                                "objects of type {x} and {y}".format(
                                    op=name, x=type(x), y=type(y)))

            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)

        return result
Beispiel #2
0
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:

            # TODO: might need to find_common_type here?
            result = np.empty(len(x), dtype=x.dtype)
            mask = notnull(x)
            result[mask] = op(x[mask], y)
            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)
        return result
Beispiel #3
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          errors='raise',
                                          **eval_kwargs)
        except TypeError:
            result = op(x, y)

        # handles discrepancy between numpy and numexpr on division/mod
        # by 0 though, given that these are generally (always?)
        # non-scalars, I'm not sure whether it's worth it at the moment
        result = missing.fill_zeros(result, x, y, name, fill_zeros)
        return result
Beispiel #4
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          errors='raise',
                                          **eval_kwargs)
        except TypeError:
            result = op(x, y)

        # handles discrepancy between numpy and numexpr on division/mod
        # by 0 though, given that these are generally (always?)
        # non-scalars, I'm not sure whether it's worth it at the moment
        result = missing.fill_zeros(result, x, y, name, fill_zeros)
        return result
Beispiel #5
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, ABCSeries)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notna(xrav) & notna(yrav)
                xrav = xrav[mask]

                if yrav.shape != mask.shape:
                    # FIXME: GH#5284, GH#5035, GH#19448
                    # Without specifically raising here we get mismatched
                    # errors in Py3 (TypeError) vs Py2 (ValueError)
                    raise ValueError('Cannot broadcast operands together.')

                yrav = yrav[mask]
                if xrav.size:
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, yrav)

            elif isinstance(x, np.ndarray):
                # mask is only meaningful for x
                result = np.empty(x.size, dtype=x.dtype)
                mask = notna(xrav)
                xrav = xrav[mask]
                if xrav.size:
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between "
                                "objects of type {x} and {y}".format(
                                    op=name, x=type(x), y=type(y)))

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)

        return result
Beispiel #6
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, ABCSeries)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notna(xrav) & notna(yrav)
                xrav = xrav[mask]

                if yrav.shape != mask.shape:
                    # FIXME: GH#5284, GH#5035, GH#19448
                    # Without specifically raising here we get mismatched
                    # errors in Py3 (TypeError) vs Py2 (ValueError)
                    raise ValueError('Cannot broadcast operands together.')

                yrav = yrav[mask]
                if xrav.size:
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, yrav)

            elif isinstance(x, np.ndarray):
                # mask is only meaningful for x
                result = np.empty(x.size, dtype=x.dtype)
                mask = notna(xrav)
                xrav = xrav[mask]
                if xrav.size:
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between "
                                "objects of type {x} and {y}".format(
                                    op=name, x=type(x), y=type(y)))

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)

        return result
Beispiel #7
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, ABCSeries)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notna(xrav) & notna(yrav)
                xrav = xrav[mask]

                # we may need to manually
                # broadcast a 1 element array
                if yrav.shape != mask.shape:
                    yrav = np.empty(mask.shape, dtype=yrav.dtype)
                    yrav.fill(yrav.item())

                yrav = yrav[mask]
                if np.prod(xrav.shape) and np.prod(yrav.shape):
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, yrav)
            elif hasattr(x, 'size'):
                result = np.empty(x.size, dtype=x.dtype)
                mask = notna(xrav)
                xrav = xrav[mask]
                if np.prod(xrav.shape):
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between "
                                "objects of type {x} and {y}".format(
                                    op=name, x=type(x), y=type(y)))

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)

        return result
Beispiel #8
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, ABCSeries)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notna(xrav) & notna(yrav)
                xrav = xrav[mask]

                # we may need to manually
                # broadcast a 1 element array
                if yrav.shape != mask.shape:
                    yrav = np.empty(mask.shape, dtype=yrav.dtype)
                    yrav.fill(yrav.item())

                yrav = yrav[mask]
                if np.prod(xrav.shape) and np.prod(yrav.shape):
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, yrav)
            elif hasattr(x, 'size'):
                result = np.empty(x.size, dtype=x.dtype)
                mask = notna(xrav)
                xrav = xrav[mask]
                if np.prod(xrav.shape):
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between "
                                "objects of type {x} and {y}".format(
                                    op=name, x=type(x), y=type(y)))

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)

        return result
Beispiel #9
0
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:
            if isinstance(y, (np.ndarray, ABCSeries, pd.Index)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                mask = notnull(x) & notnull(y)
                result[mask] = op(x[mask], _values_from_object(y[mask]))
            elif isinstance(x, np.ndarray):
                result = np.empty(len(x), dtype=x.dtype)
                mask = notnull(x)
                result[mask] = op(x[mask], y)
            else:
                raise TypeError("{typ} cannot perform the operation " "{op}".format(typ=type(x).__name__, op=str_rep))

            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)
        return result
Beispiel #10
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            if isinstance(y, (np.ndarray, ABCSeries, pd.Index)):
                dtype = find_common_type([x.dtype, y.dtype])
                result = np.empty(x.size, dtype=dtype)
                mask = notna(x) & notna(y)
                result[mask] = op(x[mask], com._values_from_object(y[mask]))
            else:
                assert isinstance(x, np.ndarray)
                result = np.empty(len(x), dtype=x.dtype)
                mask = notna(x)
                result[mask] = op(x[mask], y)

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)
        return result
Beispiel #11
0
    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            if isinstance(y, (np.ndarray, ABCSeries, pd.Index)):
                dtype = find_common_type([x.dtype, y.dtype])
                result = np.empty(x.size, dtype=dtype)
                mask = notna(x) & notna(y)
                result[mask] = op(x[mask], com._values_from_object(y[mask]))
            else:
                assert isinstance(x, np.ndarray)
                result = np.empty(len(x), dtype=x.dtype)
                mask = notna(x)
                result[mask] = op(x[mask], y)

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)

        result = missing.fill_zeros(result, x, y, name, fill_zeros)
        return result