Beispiel #1
0
    def corr(
        self,
        other: Optional[Union[np.ndarray, FrameOrSeries]] = None,
        pairwise: Optional[bool] = None,
        **kwargs,
    ):
        """
        Exponential weighted sample correlation.

        Parameters
        ----------
        other : Series, DataFrame, or ndarray, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        **kwargs
           Keyword arguments to be passed into func.
        """
        if other is None:
            other = self._selected_obj
            # only default unset
            pairwise = True if pairwise is None else pairwise
        other = self._shallow_copy(other)

        def _get_corr(X, Y):
            X = self._shallow_copy(X)
            Y = self._shallow_copy(Y)

            def _cov(x, y):
                return window_aggregations.ewmcov(x, y, self.com, self.adjust,
                                                  self.ignore_na,
                                                  self.min_periods, 1)

            x_values = X._prep_values()
            y_values = Y._prep_values()
            with np.errstate(all="ignore"):
                cov = _cov(x_values, y_values)
                x_var = _cov(x_values, x_values)
                y_var = _cov(y_values, y_values)
                corr = cov / zsqrt(x_var * y_var)
            return wrap_result(X, corr)

        return flex_binary_moment(self._selected_obj,
                                  other._selected_obj,
                                  _get_corr,
                                  pairwise=bool(pairwise))
Beispiel #2
0
    def cov(
        self,
        other: Optional[Union[np.ndarray, FrameOrSeries]] = None,
        pairwise: Optional[bool] = None,
        bias: bool = False,
        **kwargs,
    ):
        """
        Exponential weighted sample covariance.

        Parameters
        ----------
        other : Series, DataFrame, or ndarray, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        bias : bool, default False
            Use a standard estimation bias correction.
        **kwargs
           Keyword arguments to be passed into func.
        """
        if other is None:
            other = self._selected_obj
            # only default unset
            pairwise = True if pairwise is None else pairwise
        other = self._shallow_copy(other)

        def _get_cov(X, Y):
            X = self._shallow_copy(X)
            Y = self._shallow_copy(Y)
            cov = window_aggregations.ewmcov(
                X._prep_values(),
                Y._prep_values(),
                self.com,
                self.adjust,
                self.ignore_na,
                self.min_periods,
                bias,
            )
            return wrap_result(X, cov)

        return flex_binary_moment(self._selected_obj,
                                  other._selected_obj,
                                  _get_cov,
                                  pairwise=bool(pairwise))