Beispiel #1
0
def isnull(obj):
    '''
    Replacement for numpy.isnan / -numpy.isfinite which is suitable
    for use on object arrays.

    Parameters
    ----------
    arr: ndarray or object value

    Returns
    -------
    boolean ndarray or boolean
    '''
    if lib.isscalar(obj):
        return lib.checknull(obj)

    from pandas.core.generic import PandasObject
    if isinstance(obj, np.ndarray):
        return _isnull_ndarraylike(obj)
    elif isinstance(obj, PandasObject):
        # TODO: optimize for DataFrame, etc.
        return obj.apply(isnull)
    elif isinstance(obj, list) or hasattr(obj, '__array__'):
        return _isnull_ndarraylike(obj)
    else:
        return obj is None
Beispiel #2
0
def isnull(obj):
    '''
    Replacement for numpy.isnan / -numpy.isfinite which is suitable
    for use on object arrays.

    Parameters
    ----------
    arr: ndarray or object value

    Returns
    -------
    boolean ndarray or boolean
    '''
    if lib.isscalar(obj):
        return lib.checknull(obj)

    from pandas.core.generic import PandasObject
    if isinstance(obj, np.ndarray):
        return _isnull_ndarraylike(obj)
    elif isinstance(obj, PandasObject):
        # TODO: optimize for DataFrame, etc.
        return obj.apply(isnull)
    elif hasattr(obj, '__array__'):
        return _isnull_ndarraylike(obj)
    else:
        return obj is None
Beispiel #3
0
 def _format(x):
     if self.na_rep is not None and lib.checknull(x):
         if x is None:
             return 'None'
         return self.na_rep
     else:
         # object dtype
         return '%s' % formatter(x)
Beispiel #4
0
 def _format(x):
     if self.na_rep is not None and lib.checknull(x):
         if x is None:
             return 'None'
         return self.na_rep
     else:
         # object dtype
         return '%s' % formatter(x)
Beispiel #5
0
def _isnull_new(obj):
    if is_scalar(obj):
        return lib.checknull(obj)
    # hack (for now) because MI registers as ndarray
    elif isinstance(obj, ABCMultiIndex):
        raise NotImplementedError("isnull is not defined for MultiIndex")
    elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)):
        return _isnull_ndarraylike(obj)
    elif isinstance(obj, ABCGeneric):
        return obj._constructor(obj._data.isnull(func=isnull))
    elif isinstance(obj, list) or hasattr(obj, '__array__'):
        return _isnull_ndarraylike(np.asarray(obj))
    else:
        return obj is None
Beispiel #6
0
def _isnull_new(obj):
    if is_scalar(obj):
        return lib.checknull(obj)
    # hack (for now) because MI registers as ndarray
    elif isinstance(obj, ABCMultiIndex):
        raise NotImplementedError("isnull is not defined for MultiIndex")
    elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)):
        return _isnull_ndarraylike(obj)
    elif isinstance(obj, ABCGeneric):
        return obj._constructor(obj._data.isnull(func=isnull))
    elif isinstance(obj, list) or hasattr(obj, '__array__'):
        return _isnull_ndarraylike(np.asarray(obj))
    else:
        return obj is None
Beispiel #7
0
def _isnull_new(obj):
    if lib.isscalar(obj):
        return lib.checknull(obj)

    from pandas.core.generic import PandasObject
    if isinstance(obj, np.ndarray):
        return _isnull_ndarraylike(obj)
    elif isinstance(obj, PandasObject):
        # TODO: optimize for DataFrame, etc.
        return obj.apply(isnull)
    elif isinstance(obj, list) or hasattr(obj, '__array__'):
        return _isnull_ndarraylike(obj)
    else:
        return obj is None
Beispiel #8
0
    def update_last_sale(self, event):
        # NOTE, PerformanceTracker already vetted as TRADE type
        sid = event.sid
        if sid not in self.positions:
            return 0

        price = event.price

        if checknull(price):
            return 0

        pos = self.positions[sid]
        pos.last_sale_date = event.dt
        pos.last_sale_price = price
Beispiel #9
0
def _isnull_new(obj):
    if lib.isscalar(obj):
        return lib.checknull(obj)

    from pandas.core.generic import PandasObject
    if isinstance(obj, np.ndarray):
        return _isnull_ndarraylike(obj)
    elif isinstance(obj, PandasObject):
        # TODO: optimize for DataFrame, etc.
        return obj.apply(isnull)
    elif isinstance(obj, list) or hasattr(obj, '__array__'):
        return _isnull_ndarraylike(obj)
    else:
        return obj is None
Beispiel #10
0
    def update_last_sale(self, event):
        # NOTE, PerformanceTracker already vetted as TRADE type
        sid = event.sid
        if sid not in self.positions:
            return

        price = event.price
        if not checknull(price):
            pos = self.positions[sid]
            pos.last_sale_date = event.dt
            pos.last_sale_price = price
            self._position_last_sale_prices[sid] = price
            self._position_values = None  # invalidate cache
        sid = event.sid
        price = event.price
Beispiel #11
0
    def update_last_sale(self, event):
        sid = event.sid
        if sid not in self.positions:
            return

        if event.type != TRADE_TYPE:
            return

        price = event.price
        if not checknull(price):
            pos = self.positions[sid]
            pos.last_sale_date = event.dt
            pos.last_sale_price = price
            self._position_last_sale_prices[sid] = price
            self._position_values = None  # invalidate cache
Beispiel #12
0
    def update_last_sale(self, event):
        # NOTE, PerformanceTracker already vetted as TRADE type
        sid = event.sid
        if sid not in self.positions:
            return

        price = event.price
        if not checknull(price):
            pos = self.positions[sid]
            pos.last_sale_date = event.dt
            pos.last_sale_price = price
            self._position_last_sale_prices[sid] = price
            self._position_values = None  # invalidate cache
        sid = event.sid
        price = event.price
Beispiel #13
0
    def update_last_sale(self, event):
        sid = event.sid
        if sid not in self.positions:
            return

        if event.type != TRADE_TYPE:
            return

        price = event.price
        if not checknull(price):
            pos = self.positions[sid]
            pos.last_sale_date = event.dt
            pos.last_sale_price = price
            self._position_last_sale_prices[sid] = price
            self._position_values = None  # invalidate cache
    def update_last_sale(self, event):
        # NOTE, PerformanceTracker already vetted as TRADE type,注意,PerformanceTracker已经审核为TRADE类型
        sid = event.sid
        #print sid,self.positions
        if sid not in self.positions:
            return 0

        price = event.price

        if checknull(price):
            return 0
        pos = self.positions[sid]
        #print u'进入up_date_last_sale'
        #print pos
        pos.last_sale_date = event.dt
        pos.last_sale_price = price
    def update_last_sale(self, event):
        # NOTE, PerformanceTracker already vetted as TRADE type
        sid = event.sid
        if sid not in self.positions:
            return 0

        price = event.price

        if checknull(price):
            return 0

        pos = self.positions[sid]
        old_price = pos.last_sale_price
        pos.last_sale_date = event.dt
        pos.last_sale_price = price

        # Calculate cash adjustment on assets with multipliers
        return ((price - old_price) * self._position_payout_multipliers[sid]
                * pos.amount)
Beispiel #16
0
    def update_last_sale(self, event):
        # NOTE, PerformanceTracker already vetted as TRADE type
        sid = event.sid
        if sid not in self.positions:
            return 0

        price = event.price

        if checknull(price):
            return 0

        pos = self.positions[sid]
        old_price = pos.last_sale_price
        pos.last_sale_date = event.dt
        pos.last_sale_price = price

        # Calculate cash adjustment on assets with multipliers
        return ((price - old_price) * self._position_payout_multipliers[sid] *
                pos.amount)
Beispiel #17
0
def isnull(obj):
    '''
    Replacement for numpy.isnan / -numpy.isfinite which is suitable
    for use on object arrays.

    Parameters
    ----------
    arr: ndarray or object value

    Returns
    -------
    boolean ndarray or boolean
    '''
    if lib.isscalar(obj):
        return lib.checknull(obj)

    from pandas.core.generic import PandasObject
    from pandas import Series
    if isinstance(obj, np.ndarray):
        if obj.dtype.kind in ('O', 'S'):
            # Working around NumPy ticket 1542
            shape = obj.shape
            result = np.empty(shape, dtype=bool)
            vec = lib.isnullobj(obj.ravel())
            result[:] = vec.reshape(shape)

            if isinstance(obj, Series):
                result = Series(result, index=obj.index, copy=False)
        elif obj.dtype == np.dtype('M8[ns]'):
            # this is the NaT pattern
            result = np.array(obj).view('i8') == lib.iNaT
        else:
            result = -np.isfinite(obj)
        return result
    elif isinstance(obj, PandasObject):
        # TODO: optimize for DataFrame, etc.
        return obj.apply(isnull)
    else:
        return obj is None
Beispiel #18
0
def isnull(obj):
    '''
    Replacement for numpy.isnan / -numpy.isfinite which is suitable
    for use on object arrays.

    Parameters
    ----------
    arr: ndarray or object value

    Returns
    -------
    boolean ndarray or boolean
    '''
    if lib.isscalar(obj):
        return lib.checknull(obj)

    from pandas.core.generic import PandasObject
    from pandas import Series
    if isinstance(obj, np.ndarray):
        if obj.dtype.kind in ('O', 'S'):
            # Working around NumPy ticket 1542
            shape = obj.shape
            result = np.empty(shape, dtype=bool)
            vec = lib.isnullobj(obj.ravel())
            result[:] = vec.reshape(shape)

            if isinstance(obj, Series):
                result = Series(result, index=obj.index, copy=False)
        elif obj.dtype == np.dtype('M8[ns]'):
            # this is the NaT pattern
            result = np.array(obj).view('i8') == lib.iNaT
        else:
            result = -np.isfinite(obj)
        return result
    elif isinstance(obj, PandasObject):
        # TODO: optimize for DataFrame, etc.
        return obj.apply(isnull)
    else:
        return obj is None
Beispiel #19
0
 def _format_value(self, val):
     if lib.checknull(val):
         val = self.na_rep
     if self.float_format is not None and com.is_float(val):
         val = float(self.float_format % val)
     return val
Beispiel #20
0
def _my_helper_csv(self, writer, na_rep=None, cols=None,
                header=True, index=True,
                index_label=None, float_format=None, write_dtypes=None):
    if cols is None:
        cols = self.columns

    series = {}
    for k, v in self._series.iteritems():
        series[k] = v.values

    has_aliases = isinstance(header, (tuple, list, np.ndarray))
    if has_aliases or header:
        if index:
            # should write something for index label
            if index_label is not False:
                if index_label is None:
                    if isinstance(self.index, MultiIndex):
                        index_label = []
                        for i, name in enumerate(self.index.names):
                            if name is None:
                                name = ''
                            index_label.append(name)
                    else:
                        index_label = self.index.name
                        if index_label is None:
                            index_label = ['']
                        else:
                            index_label = [index_label]
                elif not isinstance(index_label, (list, tuple, np.ndarray)):
                    # given a string for a DF with Index
                    index_label = [index_label]

                encoded_labels = list(index_label)
            else:
                encoded_labels = []

            if has_aliases:
                if len(header) != len(cols):
                    raise ValueError(('Writing %d cols but got %d aliases'
                                      % (len(cols), len(header))))
                else:
                    write_cols = header
            else:
                write_cols = cols
            encoded_cols = list(write_cols)
            if write_dtypes:
                for j, col in enumerate(cols):
                    encoded_cols[j] = "{0}:{1}".format(col, self._series[col].dtype)
            writer.writerow(encoded_labels + encoded_cols)
        else:
            if write_dtypes:
                for j, col in enumerate(cols):
                    encoded_cols[j] = "{0}:{1}".format(col, self._series[col].dtype)
            writer.writerow(encoded_cols)

            encoded_cols = list(cols)
            writer.writerow(encoded_cols)

    data_index = self.index
    if isinstance(self.index, PeriodIndex):
        data_index = self.index.to_timestamp()

    nlevels = getattr(data_index, 'nlevels', 1)
    for j, idx in enumerate(data_index):
        row_fields = []
        if index:
            if nlevels == 1:
                row_fields = [idx]
            else:  # handle MultiIndex
                row_fields = list(idx)
        for i, col in enumerate(cols):
            val = series[col][j]
            if lib.checknull(val):
                val = na_rep

            if float_format is not None and com.is_float(val):
                val = float_format % val
            elif isinstance(val, np.datetime64):
                val = lib.Timestamp(val)._repr_base

            row_fields.append(val)

        writer.writerow(row_fields)
Beispiel #21
0
 def _format_value(self, val):
     if lib.checknull(val):
         val = self.na_rep
     if self.float_format is not None and com.is_float(val):
         val = float(self.float_format % val)
     return val