Beispiel #1
0
def get_input(type, nrows, ncols, dtype, order='C', out_dtype=False):
    rand_mat = (cp.random.rand(nrows, ncols) * 10)
    rand_mat = cp.array(rand_mat, dtype=dtype, order=order)

    if type == 'numpy':
        result = np.array(cp.asnumpy(rand_mat), order=order)

    if type == 'cupy':
        result = rand_mat

    if type == 'numba':
        result = nbcuda.as_cuda_array(rand_mat)

    if type == 'cudf':
        result = cudf.DataFrame(rand_mat)

    if type == 'pandas':
        result = pdDF(cp.asnumpy(rand_mat))

    if type == 'cuml':
        result = CumlArray(data=rand_mat)

    if out_dtype:
        return result, np.array(cp.asnumpy(rand_mat).astype(out_dtype),
                                order=order)
    else:
        return result, np.array(cp.asnumpy(rand_mat), order=order)
Beispiel #2
0
    def makeDataFrame(self):
        dataGather = {'제목': [], '일시': [], '내용': [], '링크': []}
        for item in self.allItems:
            dataGather['제목'].append(
                BeautifulSoup(item.title.get_text(strip=True),
                              'lxml').get_text())
            pubDate = item.pubdate.get_text(strip=True)
            pubDate = dt.strptime(pubDate, '%a, %d %b %Y %H:%M:%S %z')
            pubDate = dt.strftime(pubDate, '%Y-%m-%d %H:%M:%S')
            dataGather['일시'].append(pubDate)
            dataGather['내용'].append(
                BeautifulSoup(item.description.get_text(strip=True),
                              'lxml').get_text())
            dataGather['링크'].append(item.originallink.get_text(strip=True))

        self.resData = pdDF(dataGather)
        self.resData.index += 1
        self.fileWrite()
Beispiel #3
0
 def liked_songs_to_csv(self, *args):
     from pandas import DataFrame as pdDF
     columns = ['title', 'artist(s)']
     keys = {
         "added_at": lambda it: it['added_at'],
         "album": lambda it: it['track']['album']['name'],
         "album_type": lambda it: it['track']['album']['album_type'],
         "release_date": lambda it: it['track']['album']['release_date'],
         "total_tracks": lambda it: it['track']['album']['total_tracks'],
         "disc_number": lambda it: it['track']['disc_number'],
         "duration_ms": lambda it: it['track']['duration_ms'],
         "explicit": lambda it: it['track']['explicit'],
         "popularity": lambda it: it['track']['popularity'],
         "track_number": lambda it: it['track']['track_number'],
         "id": lambda it: it['track']['id'],
         "is_local": lambda it: it['track']['is_local']
     }
     for kw in args:
         if kw.lower() in keys:
             columns.append(kw)
     df = pdDF(columns=columns)
     off = 0
     i = 0
     while True:
         results = self.sp.current_user_saved_tracks(limit=50, offset=off)
         off += 50
         for item in results['items']:
             row = [
                 item['track']['name'], item['track']['artists'][0]['name']
             ]
             if len(columns) > 2:
                 for kw in columns[2:]:
                     row.append(keys[kw](item))
             df.loc[i] = row
             i += 1
         if results["next"] is None:
             break
     df.to_csv('MySpotipyLikedSongs.csv')