df.ix[0] '# 结束----------------------------' 'csv_data = pd.read_csv(self.file_path, encoding='GB18030')' '''encoding设置编码格式,即使有中文的表头,也不必设置,设置了中文字符集反而会有问题''' '# 结束----------------------------' ''.'.join(list)' '''.号把List里面的字符串起来''' list = ['a', 'b'] '.'.join(list) '# 结束----------------------------' 'pd.plot(title="XXX", xlim=(0, 10000), ylim=(-30, 100), secondary_y=["VehSpd"])' '''用dataframe画图,以dataframe index为横坐标,其他列作纵坐标画出曲线系,secondary_y可以设置画在第二个y轴的列''' pd.set_index("Time") # 用某一列作为dataframe的index '# 结束----------------------------' 'function(**dict)----------------------------' '''把关键字参数用字典的形式包装传给函数''' '# 结束----------------------------' 'MODEL.objects.filter(**dict)----------------------------' '''把sql参数用字典的形式包装传给spl语句''' '# 结束----------------------------' 'reshape(-1,1)----------------------------' '''ndarraay每个元素撞到一个ndarray中''' '# 结束----------------------------' 'pd.get_dummies(df)----------------------------'
import pandas as pd import country_converter as coco pd = pd.read_csv('Emissions_with_ISO3.csv') pd = pd.set_index('ISO3') pd = pd.rank(ascending=False).reset_index() pd.to_csv('emissions_rankings.csv')
X = X.rename(columns={"OpinionEquilibriumBot": "OpinionEquilibrium"}) df_nobot = df_nobot.append(X) #get node degrees in observed network X = [] for sd in list(Gbot.in_degree()): x = {"ScreenName": sd[0], "in_degree": sd[1]} X.append(x) Din = pd.DataFrame(X) X = [] for sd in list(Gbot.out_degree()): x = {"ScreenName": sd[0], "out_degree": sd[1]} X.append(x) Dout = pd.DataFrame(X) df_degree = pd.merge(Din, Dout, on="ScreenName", how="inner") df.set_index('ScreenName') df_bot.set_index('ScreenName') df_nobot.set_index('ScreenName') #df_bot.to_csv(path_data+"df_bot.csv") #df_nobot.to_csv(path_data+"df_nobot.csv") df_bot = pd.merge(df, df_bot, on="ScreenName", how="inner") df_bot = pd.merge(df_degree, df_bot, on="ScreenName", how="inner") df_assess = pd.merge(df_bot, df_nobot, on="ScreenName") df_assess = df_assess[[ "ScreenName", "OpinionNeuralNet", "OpinionEquilibriumBot", "OpinionEquilibrium", "Bot", "Stubborn", "Rate", "friend_count", "follower_count", "in_degree", "out_degree" ]]