def get_options_data(ticker='^GSPC'):
    tape = Options(ticker, 'yahoo')
    data = tape.get_all_data()
    data.to_csv('raw.csv')
    data = pd.read_csv('raw.csv')
    del data['JSON']
    return data
Beispiel #2
0
def run(ctx, config_yaml, output_csv):
    """This command loads config.yaml and the current ENV-ironment,
    creates a single merged dict, and prints to stdout.
    """

    # read the configuration file
    c = app.get_config_dict(ctx, [config_yaml])

    # use cache to reduce web traffic
    session = requests_cache.CachedSession(
        cache_name='cache',
        backend='sqlite',
        expire_after=datetime.timedelta(days=days_to_cache))

    # all data will also be combined into one CSV
    all_df = None

    for ticker in c['config']['options']['long_puts']:
        option = Options(ticker, 'yahoo', session=session)

        # fetch all data
        df = option.get_all_data()

        # process the data
        df = long_puts_process_dataframe(df)

        # ensure the all_df (contains all data from all tickers)
        if all_df is None:
            all_df = df.copy(deep=True)
        else:
            all_df = all_df.append(df)

        # output the all_df, which contains all of the tickers
        long_puts_csv_out(output_csv, all_df)
Beispiel #3
0
def update_option_chain():

    conn = MySQLdb.connect(host="127.0.0.1",
                           user="******",
                           passwd="zhuang123",
                           db="Analytics")
    x = conn.cursor()

    columns = [
        'ask', 'bid', 'change', 'contractSize', 'contractSymbol', 'currency',
        'expiration', 'impliedVolatility', 'inTheMoney', 'lastPrice',
        'lastTradeDate', 'openInterest', 'percentChange', 'strike', 'volume',
        'pricingDate', 'underlying', 'underlyingPrice', 'type', 'mid'
    ]

    dt_columns = ['expiration', 'lastTradeDate']

    for ticker in scrape_list():
        try:
            option = Options(ticker, 'yahoo')

            option_chain = option.get_all_data()
            stmt = 'INSERT INTO OptionQuotes VALUES (' + ','.join(
                ['%s'] * len(columns)) + ')'
            for index, option in enumerate(option_chain['JSON'].tolist()):
                option['pricingDate'] = datetime.datetime.now().strftime(
                    '%Y-%m-%d %H:%M:%S')
                option['underlying'] = option_chain.iloc[index]['Underlying']
                option['underlyingPrice'] = option_chain.iloc[index][
                    'Underlying_Price']
                option['type'] = 'call' if (
                    option['underlyingPrice'] > option['strike']
                    and option['inTheMoney']) or (
                        option['underlyingPrice'] < option['strike']
                        and not option['inTheMoney']) else 'put'
                option['mid'] = (option['ask'] + option['bid']) / 2.
                values = [
                    option[column] if column not in dt_columns else
                    datetime.datetime.fromtimestamp(
                        option[column]).strftime('%Y-%m-%d %H:%M:%S')
                    for column in columns
                ]
                print 'update', ticker, 'with values: ', values
                x.execute(stmt, tuple(values))
        except Exception as e:
            print 'failed to update', ticker, 'becasue:', str(e)
    conn.commit()

    conn.close()
Beispiel #4
0
def all_options(ticker, dte_ub, dte_lb, moneyness = 0.03):
    tape = Options(ticker, 'yahoo')
    data = tape.get_all_data().reset_index()
    
    data['Moneyness'] = np.abs(data['Strike'] - data['Underlying_Price'])/data['Underlying_Price']
    
    data['DTE'] = (data['Expiry'] - dt.datetime.today()).dt.days
    data = data[['Strike', 'Expiry','DTE', 'Type', 'IV', 'Underlying_Price',
                 'Last','Bid','Ask', 'Moneyness']]
    data['Mid'] = (data['Ask'] - data['Bid'])/2 + data['Bid']
    data = data.dropna()
    data = data[(abs(data['Moneyness']) <= moneyness) &
                (data['DTE'] <= dte_ub) &
                (data['DTE'] >= dte_lb)]
    return data.sort_values(['DTE','Type']).reset_index()[data.columns]#data.dropna().reset_index()[data.columns]
def all_options(ticker):
    tape = Options(ticker, 'yahoo')
    data = tape.get_all_data().reset_index()

    data['Moneyness'] = np.abs(
        data['Strike'] - data['Underlying_Price']) / data['Underlying_Price']

    data['DTE'] = (data['Expiry'].dt.date - dt.datetime.today().date()).dt.days
    data = data[[
        'Strike', 'DTE', 'Type', 'IV', 'Vol', 'Open_Int', 'Moneyness', 'Root',
        'Underlying_Price', 'Last', 'Bid', 'Ask', 'Expiry'
    ]]
    data['Mid'] = (data['Ask'] - data['Bid']) / 2 + data['Bid']

    return data.reset_index()[data.columns]
Beispiel #6
0
def getOptClosePrice(stock, source, expDate, strick):

    df_opt = Options(stock, source)
    data = df_opt.get_all_data()
    '''
    print data.loc[(46, '2018-03-16','call'),('Last','Underlying_Price')].head()
    print data.loc[(46, '2018-03-16','call'),'Vol'].head()
    print '------------------'
    print data.iloc[0:5, 0:5]
    print '-------------'
    #Show the $100 strike puts at all expiry dates:
    '''
    #print '1: ' , data.loc[(strick, expDate, 'call'),:] #.iloc[0:5, 0:5]
    res = data.loc[(strick, expDate, 'call'),
                   ('Last', 'Underlying_Price')]  #.iloc[0:5, 0:5]
    #    print '1: ' , res
    #    print '--------------'
    return res
    def yahoo_options_dataframe(self, ticker):

        # fetch all data
        option = Options(ticker, 'yahoo', session=self.session)
        df = option.get_all_data()

        # reset_index()
        #   copies multi-index values into columns
        #   sets index to single ordinal integer
        df.reset_index(inplace=True)

        # rename a bunch of the columns
        df.rename(index=str,
                  inplace=True,
                  columns={
                      'Strike': 'strike',
                      'Expiry': 'expiry',
                      'Type': 'type',
                      'Symbol': 'symbol',
                      'Last': 'lst',
                      'Bid': 'bid',
                      'Ask': 'ask',
                      'Chg': 'chg',
                      'Vol': 'vol',
                      'Open_Int': 'oi',
                      'Root': 'root',
                      'IsNonstandard': 'nonstandard',
                      'Underlying': 'underlying',
                      'Underlying_Price': 'underlyingprice',
                      'Quote_Time': 'quotetime'
                  })

        # delete unnecessary columns
        df.drop('PctChg', axis=1, inplace=True)
        df.drop('IV', axis=1, inplace=True)
        df.drop('Last_Trade_Date', axis=1, inplace=True)
        df.drop('JSON', axis=1, inplace=True)

        # normalize values for type column
        df['type'] = df.apply(lambda row: 'call'
                              if row['type'] == 'calls' else 'put',
                              axis=1)

        return df
Beispiel #8
0
def compute_model_error(model, symbol, side, exp_start, exp_end, strike_low, strike_high):
    
    #Get the option prices
    options_sym = Options(symbol, 'yahoo')
    options_sym.expiry_dates
    options_data = options_sym.get_all_data()
    options_data = options_data.loc[(slice(strike_low,strike_high), slice(exp_start, exp_end), side),:]

    #get yesterdays stock price
    stock_price = float(Share(symbol).get_price())

    labels = ["strike", "expiry", "option price", "pred price", "error"]
    data = []
    for index, row in options_data.iterrows():
        strike = index[0]
        expiration_date = index[1].date()
        option_price = row['Last']
        pred_price = round(model(strike, stock_price, expiration_date, side), 2)

        data.append([strike, expiration_date.strftime('%Y-%m-%d'), option_price, pred_price, option_price-pred_price])

    return labels, data
Beispiel #9
0
def update_option_chain(ticker):
    conn = MySQLdb.connect(host="127.0.0.1",
                           user="******",
                           passwd="zhuang123",
                           db="Analytics")
    x = conn.cursor()

    columns = [
        'ask', 'bid', 'change', 'contractSize', 'contractSymbol', 'currency',
        'expiration', 'impliedVolatility', 'inTheMoney', 'lastPrice',
        'lastTradeDate', 'openInterest', 'percentChange', 'strike', 'volume'
    ]

    dt_columns = ['expiration', 'lastTradeDate']
    try:
        aapl = Options(ticker, 'yahoo')

        option_chain = aapl.get_all_data()
        stmt = 'INSERT INTO OptionQuotes VALUES (' + ','.join(
            ['%s'] * 15) + ')'
        for option in option_chain['JSON'].tolist():
            x.execute(
                stmt,
                tuple([
                    option[column] if column not in dt_columns else
                    datetime.datetime.fromtimestamp(
                        option[column]).strftime('%Y-%m-%d %H:%M:%S')
                    for column in columns
                ]))
            conn.commit()
    except Exception as e:
        conn.rollback()
        print(e)

    conn.close()


#update_option_chain('GOOG')
Beispiel #10
0
def xwYahooOptionChain(symbol,optype=None,bid=None,minstrike=None,maxstrike=None,expiry=None):
    
    stk = Options(symbol, 'yahoo')

    df = stk.get_all_data()
    
    df.drop(['Chg','PctChg','Vol','Open_Int','IV','Root','IsNonstandard','Underlying','Underlying_Price','Quote_Time','Last_Trade_Date','JSON'], axis=1,inplace=True)
    df.reset_index(inplace=True)
   
    if optype is not None:
        if optype.lower() == 'call': df = df.loc[df['Type'] == 'call']
        if optype.lower() == 'put':  df = df.loc[df['Type'] == 'put']

    if bid is not None:
        if bid > 0: df = df.loc[df['Bid'] >= bid]
     
    if minstrike is not None and maxstrike is not None:
        if minstrike != maxstrike:
            df = df.loc[(df['Strike'] >= minstrike) & (df['Strike'] <= maxstrike)]
         
    df.sort_values(by=['Expiry','Strike','Type'],ascending=[True,True,True],inplace=True)
    df.set_index('Expiry',inplace=True)

    return df    
def all_options(ticker):
    tape = Options(ticker, 'yahoo')
    data = tape.get_all_data().reset_index()
    
    data['Moneyness'] = np.abs(data['Strike'] - data['Underlying_Price'])/data['Underlying_Price']
    
    data['DTE'] = (data['Expiry'] - dt.datetime.today()).dt.days
    data = data[['Strike', 'DTE', 'Type', 'IV', 'Vol','Open_Int', 'Moneyness', 'Root', 'Underlying_Price',
                 'Last','Bid','Ask']]
    data['Mid'] = (data['Ask'] - data['Bid'])/2 + data['Bid']
    
    year = 365
    strikes = data['Strike'].values
    time_to_expirations = data['DTE'].values
    ivs = data['IV'].values
    underlying = data['Underlying_Price'].values[0]
    types = data['Type'].values

    # Make sure nothing thows up
    assert len(strikes) == len(time_to_expirations)

    sigmas = data['IV']
    deltas = []
    gammas = []
    thetas = []
    vegas = []
    for sigma, strike, time_to_expiration, flag in zip(sigmas, strikes, time_to_expirations, types):

        # Constants
        S = underlying
        K = strike
        t = time_to_expiration/float(year)
        r = 0.005 / 100
        q = 0 / 100

        try:
            delta = py_vollib.black_scholes_merton.greeks.analytical.delta(flag[0], S, K, t, r, sigma, q)
            deltas.append(delta)
        except:
            delta = 0.0
            deltas.append(delta)

        try:
            gamma = py_vollib.black_scholes_merton.greeks.analytical.gamma(flag[0], S, K, t, r, sigma, q)
            gammas.append(gamma)
        except:
            gamma = 0.0
            gammas.append(gamma)

        try:
            theta = py_vollib.black_scholes_merton.greeks.analytical.theta(flag[0], S, K, t, r, sigma, q)
            thetas.append(theta)
        except:
            theta = 0.0
            thetas.append(theta)

        try:
            vega = py_vollib.black_scholes_merton.greeks.analytical.vega(flag[0], S, K, t, r, sigma, q)
            vegas.append(vega)
        except:
            vega = 0.0
            vegas.append(vega)

    data['Delta'] = deltas
    data['Gamma'] = gammas
    data['Theta'] = thetas
    data['Vega'] = vegas

    return data.reset_index()[data.columns]#data.dropna().reset_index()[data.columns]
Beispiel #12
0
class leg:
	def __init__(self, ticker, ask, bid, strike, expiration):

		self.ticker = ticker
		self.ask = ask
		self.bid = bid
		self.strike = strike
		self.expiration = expiration


'''
Pandas_Datareader returns a dataframe with formatted
option data. Uses a heriarchial index to allow for easy
and specific access of information
'''
ticker = Options('amzn','yahoo')
expiration_dates = ticker.expiry_dates
data = ticker.get_all_data()

yr =2017
mon = 4
day =21
exp_date = dt.datetime(yr, mon, day)
kind = 'call'


raw = data.loc[(900,exp_date,kind),['Ask','Bid']]
bid = float(raw.xs('Bid', axis = 1))
ask = float(raw.xs('Ask', axis = 1))
print(str(ask) +' | '+str(bid))
Beispiel #13
0
def get_raw_data(ticker):
    tape = Options(ticker, 'yahoo')
    data = tape.get_all_data()
    return data
def main():

    optionschain = Options(SYMBOL, 'yahoo')
    dataoptionschain = optionschain.get_all_data()
    optionsexpiries = optionschain.expiry_dates

    if (optionsexpiries[1].month - optionsexpiries[0].month) > 1:
        take3 = 1
    else:
        take3 = 0

    divacc = DIVIDENDSROW(std, dividends, PR)

    plt.figure(1, figsize=(8, 12))
    plt.subplot(211)
    plt.title("Price/Price Dividend Comparison")
    plt.xlabel("Date")
    plt.ylabel("Price")
    plt.plot(datahighlowclosevolume['Close'])
    plt.ylim(datahighlowclosevolume['Close'].min() * 0.98,
             datahighlowclosevolume['Close'].max() * 1.02)

    plt.figure(1, figsize=(8, 12))
    plt.subplot(211)
    plt.plot(divacc['pricediv'])
    plt.ylim(divacc['Close'].min() * 0.98, divacc['pricediv'].max() * 1.02)

    plt.figure(2, figsize=(8, 12))
    plt.subplot(211)
    plt.title("Price/Price Dividend Comparison in %")
    plt.xlabel("Date")
    plt.ylabel("%")
    plt.plot(divacc['priceprc'])
    plt.ylim(divacc['priceprc'].min() * 0.98,
             divacc['pricedivprc'].max() * 1.02)

    plt.figure(2, figsize=(8, 12))
    plt.subplot(211)
    plt.plot(divacc['pricedivprc'])
    plt.ylim(divacc['priceprc'].min() * 0.98,
             divacc['pricedivprc'].max() * 1.02)

    plt.figure(3, figsize=(8, 12))
    plt.subplot(211)
    plt.title(
        "Price/Price + Dividend + Call Option Short (Covered Call) Comparison")
    plt.xlabel("Date")
    plt.ylabel("Price")
    plt.plot(datahighlowclosevolume['Close'])
    plt.ylim(datahighlowclosevolume['Close'].min() * 0.98,
             datahighlowclosevolume['Close'].max() * 1.02)

    if take3 == 0:

        plt.figure(3, figsize=(8, 12))
        plt.subplot(211)
        plt.plot(divacc['pricediv_option1'])
        plt.ylim(divacc['Close'].min() * 0.98,
                 divacc['pricediv_option1'].max() * 1.02)

    else:
        plt.figure(3, figsize=(8, 12))
        plt.subplot(211)
        plt.plot(divacc['pricediv_option3'])
        plt.ylim(divacc['Close'].min() * 0.98,
                 divacc['pricediv_option3'].max() * 1.02)

    plt.figure(4, figsize=(8, 12))
    plt.subplot(211)
    plt.title(
        "Price/Price + Dividend + Call Option Short (Covered Call) Comparison in %"
    )
    plt.xlabel("Date")
    plt.ylabel("%")
    plt.plot(divacc['priceprc'])
    plt.ylim(divacc['priceprc'].min() * 0.98,
             divacc['pricedivprc'].max() * 1.02)

    if take3 == 0:

        plt.figure(4, figsize=(8, 12))
        plt.subplot(211)
        plt.plot(divacc['pricediv_option1_prc'])
        plt.ylim(divacc['priceprc'].min() * 0.98,
                 divacc['pricediv_option1_prc'].max() * 1.02)

    else:
        plt.figure(4, figsize=(8, 12))
        plt.subplot(211)
        plt.plot(divacc['pricediv_option3_prc'])
        plt.ylim(divacc['priceprc'].min() * 0.98,
                 divacc['pricediv_option3_prc'].max() * 1.02)
Beispiel #15
0
class OptionLib:
    def __init__(self,
                 symbol='SPY',
                 dataprovider='yahoo',
                 riskfree=0.01,
                 dividendrate=0.01):

        self.SYMBOL = symbol
        self.data_provider = dataprovider

        self.__oldsymbol = symbol
        self.__olddataprovider = dataprovider

        self.risk_free_rate = riskfree
        self.dividend_rate = dividendrate

        self.opt = None

        self.IVs = {'c': [], 'p': []}

        self.__last_quote = None
        self.__underlying_price = None

        self.__data = None
        self.__data_core = None

        self.data_selection = (0, 'c')

        self.tickSize = 0.5
        self.data_init()

    #########################################################################################################
    #                                   Data Building and Housekeeping                                      #
    #########################################################################################################
    @waitSyncFlag
    def data_init(self):

        self.opt = Options(self.SYMBOL, self.data_provider)
        self.__underlying_price = self.opt.underlying_price
        self.data_building_core()
        self.lastGreeks = {'strike': None, 'data': {}, 'S': [], 'T': []}
        self.IVs = {'c': [], 'p': []}

        self.data_aggregate_IV()

    @waitSyncFlag
    def data_refresh(self):

        self.__underlying_price = self.opt.underlying_price
        self.data_building_core()
        self.lastGreeks = {'strike': None, 'data': {}, 'S': [], 'T': []}
        self.IVs = {'c': [], 'p': []}
        self.data_aggregate_IV()

    @parallelProcess
    def data_auto_refresh(self):
        # This should be running in another thread
        while True:
            if not (self.SYMBOL == self.__oldsymbol
                    and self.data_provider == self.__olddataprovider):
                self.__oldsymbol, self.__olddataprovider = self.SYMBOL, self.data_provider
                self.__last_quote = self.opt.get_call_data(
                ).iloc[0]['Quote_Time'].to_pydatetime()
                self.data_init()
                print('Data Initialization for {} [ COMPLETE ]'.format(
                    self.SYMBOL))
            if not (self.opt.get_call_data().iloc[0]
                    ['Quote_Time'].to_pydatetime() == self.__last_quote):
                self.__last_quote = self.opt.get_call_data(
                ).iloc[0]['Quote_Time'].to_pydatetime()
                self.data_refresh()
                print('Data Refreshing for {} [ COMPLETE ]'.format(
                    self.SYMBOL))

    @requireSyncFlag
    def data_building_core(self):
        try:
            assert self.opt
            df = self.opt.get_all_data()
            dflen = len(df.index.values)
            d = {}
            for i in range(dflen):

                dfindex = df.index.values[i]
                row = df.loc[dfindex]
                exp = dfindex[1].to_pydatetime()
                curr = row['Quote_Time'].to_pydatetime()
                toe = float((exp - curr).days) / 365.0
                # Days until expiration
                dte = round(toe * 365) + 1
                otype = 'c' if dfindex[2] == 'call' else 'p'
                # Index will be using expiry_date index
                expd = exp.date()
                j = self.opt.expiry_dates.index(expd)
                bso = Black_Scholes(option_type=otype,
                                    price=row['Underlying_Price'],
                                    strike=dfindex[0],
                                    interest_rate=self.risk_free_rate,
                                    dividend_yield=self.dividend_rate,
                                    volatility=row['IV'],
                                    expiry=toe)
                # Check if the index exists or not
                if not (j in d):
                    d[j] = {'matrix': [], 'indexes': []}
                # [ [ Ask, Bid, Last, Vol, %, sigma, delta, gamma, kappa, theta, rho, dte, symbol] , (...) ]
                d[j]['matrix'].append([
                    row['Ask'], row['Bid'], row['Last'],
                    int(row['Vol']), row['PctChg'],
                    round(row['IV'], 2),
                    round(bso.delta, 2),
                    round(bso.gamma, 2),
                    round(bso.kappa, 2),
                    round(bso.theta, 2),
                    round(bso.rho, 2), dte, dfindex[3]
                ])
                # [ ( type, strike), ... ]
                d[j]['indexes'].append((otype, dfindex[0]))
            self.__data_core = d
        except AssertionError:
            raise DataFormatError(
                'No Data from Yahoo, Check Internet Connection')

    @requireSyncFlag
    def data_aggregate_IV(self):
        """
        Aggregate Contract's sigma by call and puts then store them in [ Time to Expiration, Strike, Volatility ]
        format for later plotting
        """
        try:
            assert self.__data_core
            d = self.__data_core.copy()

            for t in d.keys():
                matrix = d[t]['matrix']
                indexes = d[t]['indexes']
                for i in range(len(matrix)):
                    # Format : [ Time to Expiration, Strike, Volatility ]
                    self.IVs[indexes[i][0]].append(
                        [matrix[i][11], indexes[i][1], matrix[i][5]])

        except AssertionError:
            raise DataFormatError('Must input a pandas.DataFrame')

    def data_IVpT(self, expiry_index=0):
        """
        Compute IV per timestamp
        :return: calls and puts
        """
        dt = self.__data_core[expiry_index].copy()
        matrix = dt['matrix']
        indexes = dt['indexes']
        calls, puts = [], []
        # calls = [ [ Strike, IV] , ... ]
        for i in range(len(matrix)):
            if indexes[i][0] == 'c':
                calls.append([indexes[i][1], matrix[i][5]])
            else:
                puts.append([indexes[i][1], matrix[i][5]])
        return calls, puts

    def data_aggregate_greeks(self, strike=None):
        """

        :return:
        """
        try:
            assert self.__data_core
            assert strike
            d = self.__data_core.copy()
            times = []
            sigmas = []

            for t in d.keys():
                matrix = d[t]['matrix']
                indexes = d[t]['indexes']
                for i in range(len(matrix)):
                    if indexes[i][0] == 'c' and indexes[i][1] == strike:
                        sigmas.append(matrix[i][5])
                        times.append(float(matrix[i][11]) / 365.0)

            # Matrices are n x m
            #   where n : the nb of contract_dates
            # compute underlyingPrice matrix

            underlyingPriceMatrix = np.array([
                np.arange(0.0, self.__underlying_price * 2, self.tickSize)
                for i in range(len(sigmas))
            ])

            MatrixShape = underlyingPriceMatrix.shape

            sigmaMatrix = np.array([
                np.ones(MatrixShape[1]) * sigmas[i]
                for i in range(MatrixShape[0])
            ]).reshape(MatrixShape)

            expiryMatrix = np.array([
                np.ones(MatrixShape[1]) * times[i]
                for i in range(MatrixShape[0])
            ]).reshape(MatrixShape)

            ccontracts = []
            pcontracts = []

            for i in range(MatrixShape[0]):

                for j in range(MatrixShape[1]):
                    cbso = Black_Scholes(option_type='c',
                                         strike=strike,
                                         price=underlyingPriceMatrix[i][j],
                                         interest_rate=self.risk_free_rate,
                                         dividend_yield=self.dividend_rate,
                                         expiry=expiryMatrix[i][j],
                                         volatility=sigmaMatrix[i][j])

                    pbso = Black_Scholes(option_type='p',
                                         strike=strike,
                                         price=underlyingPriceMatrix[i][j],
                                         interest_rate=self.risk_free_rate,
                                         dividend_yield=self.dividend_rate,
                                         expiry=expiryMatrix[i][j],
                                         volatility=sigmaMatrix[i][j])
                    #Access elements in matrix[i][j]
                    ccontracts.append(cbso)
                    pcontracts.append(pbso)

            cdelta = np.array([c.delta
                               for c in ccontracts]).reshape(MatrixShape)
            cgamma = np.array([c.gamma
                               for c in ccontracts]).reshape(MatrixShape)
            ctheta = np.array([c.theta
                               for c in ccontracts]).reshape(MatrixShape)
            ckappa = np.array([c.kappa
                               for c in ccontracts]).reshape(MatrixShape)
            crho = np.array([c.rho for c in ccontracts]).reshape(MatrixShape)

            pdelta = np.array([p.delta
                               for p in pcontracts]).reshape(MatrixShape)
            pgamma = np.array([p.gamma
                               for p in pcontracts]).reshape(MatrixShape)
            ptheta = np.array([p.theta
                               for p in pcontracts]).reshape(MatrixShape)
            pkappa = np.array([p.kappa
                               for p in pcontracts]).reshape(MatrixShape)
            prho = np.array([p.rho for p in pcontracts]).reshape(MatrixShape)

            greeks = {'c': {}, 'p': {}}
            greeks['c']['delta'] = cdelta
            greeks['c']['gamma'] = cgamma
            greeks['c']['theta'] = ctheta
            greeks['c']['kappa'] = ckappa
            greeks['c']['rho'] = crho

            greeks['p']['delta'] = pdelta
            greeks['p']['gamma'] = pgamma
            greeks['p']['theta'] = ptheta
            greeks['p']['kappa'] = pkappa
            greeks['p']['rho'] = prho

            self.lastGreeks['data'] = greeks
            self.lastGreeks['strike'] = strike
            self.lastGreeks['S'] = underlyingPriceMatrix
            self.lastGreeks['T'] = expiryMatrix

        except AssertionError:
            pass
        pass

    #########################################################################################################
    #                                   Client's Methods and Properties                                     #
    #########################################################################################################

    @property
    def index(self):
        opt = self.opt
        d = {'Expiry Dates': opt.expiry_dates}
        return pd.DataFrame(data=d).transpose()

    @property
    def data(self):

        print('Underlying @ {:.2f} \nLatest Option Quote @: {}\n'.format(
            self.__underlying_price, self.__last_quote))
        print('Current Contracts Expires @ {}\n'.format(
            self.opt.expiry_dates[self.data_selection[0]]))
        obj = self.__data_core[self.data_selection[0]]
        data = np.array(obj['matrix'])
        indexes = obj['indexes']
        filtered_matrix = []
        filtered_indexes = []

        for i in range(len(data)):
            if indexes[i][0] == self.data_selection[1]:
                filtered_matrix.append(data[i])
                filtered_indexes.append(indexes[i][1])

        columns = [
            'Ask', 'Bid', 'Last', 'Vol', '%', '\u03C3', '\u0394', '\u0393',
            '\u039A', '\u0398', '\u03A1', 'Days to Expiry', 'Symbol'
        ]
        df = pd.DataFrame(data=filtered_matrix,
                          index=filtered_indexes,
                          columns=columns)
        return df

    @property
    def VIEW_SELECTION(self):
        return 'CURRENTLY SELECTED DATA :: [ INDEX : {} | TYPE : {} | SYMBOL : {} ]'.format(
            self.data_selection[0], self.data_selection[1], self.SYMBOL)

    def select(
        self,
        INDEX=0,
        TYPE='c',
    ):
        """
        Setting the data-selecting tuple
        """
        try:
            assert TYPE == 'c' or TYPE == 'p'
            assert INDEX < len(self.opt.expiry_dates)
            self.data_selection = (INDEX, TYPE)
        except AssertionError:
            raise DataFormatError(
                'Expiry index and option type ("c" or "p") must be valid')

    #########################################################################################################
    #                                       Plotting                                                        #
    #########################################################################################################

    def plot_smile(
        self,
        expiry_index=None,
    ):
        """
        Plot the IV smile for both calls and puts per timestamp
        """
        expiry_index = expiry_index if expiry_index else self.data_selection[0]
        calls, puts = self.data_IVpT(expiry_index=expiry_index)

        k_calls, IV_calls = [], []
        k_puts, IV_puts = [], []

        for el in calls:
            k_calls.append(el[0])
            IV_calls.append(el[1])
        for el in puts:
            k_puts.append(el[0])
            IV_puts.append(el[1])

        plt.figure(figsize=(16, 7))
        e = plt.scatter(k_calls, IV_calls, c='white', label="IV(call options)")
        f = plt.scatter(k_puts, IV_puts, c='red', label="IV(put options)")
        plt.xlabel('strike')
        plt.ylabel('Implied Volatility')
        plt.legend((e, f), ("IV (call options)", "IV (put options)"))

    def plot_surface(
        self,
        option_type=None,
    ):
        try:
            if option_type:
                assert option_type == 'c' or option_type == 'p'
            option_type = option_type if option_type else self.data_selection[1]
            plotdata = self.IVs[option_type]
            color = 'red' if option_type == 'p' else 'green'

            xaxis = [plotdata[i][0] for i in range(len(plotdata))]
            yaxis = [plotdata[i][1] for i in range(len(plotdata))]
            zaxis = [plotdata[i][2] for i in range(len(plotdata))]

            fig1 = plt.figure(figsize=(20, 12))
            ax = fig1.add_subplot(111, projection='3d')
            ax.view_init()
            ax.scatter(xaxis, yaxis, zaxis, c=color)
            plt.xlabel("Time to Expiration (days)")
            plt.ylabel("Strikes")
            plt.title("Implied Volatility")

            fig2 = plt.figure(figsize=(20, 12))
            ax2 = fig2.add_subplot(111, projection='3d')
            ax2.view_init()
            ax2.plot_trisurf(xaxis, yaxis, zaxis, cmap=cm.jet)
            plt.xlabel("Time to Expiration (days)")
            plt.ylabel("Strikes")
            plt.title("Implied Volatility")

        except AssertionError:
            print(
                'You must specify option type as first argument and/or Invalid option type'
            )
        except Exception as e:
            print(e)

    def plot_letter(self, LETTER=None, STRIKE=None, otype='c'):
        try:
            assert LETTER in ['delta', 'gamma', 'theta', 'kappa', 'rho']
            data = {}
            S, T = [], []
            strike = STRIKE if STRIKE else np.round(self.__underlying_price)

            if self.lastGreeks['strike'] and self.lastGreeks[
                    'strike'] == strike:
                data, S, T = self.lastGreeks['data'], self.lastGreeks[
                    'S'], self.lastGreeks['T']
            else:
                self.data_aggregate_greeks(strike=strike)
                data, S, T = self.lastGreeks['data'], self.lastGreeks[
                    'S'], self.lastGreeks['T']

            print('Plotting {} with Strike {} for {} - {}\n'.format(
                LETTER, strike, self.SYMBOL, otype))

            Z = data[otype][LETTER]
            fig = plt.figure(figsize=(20, 11))
            ax = fig.add_subplot(111, projection='3d')
            ax.view_init(40, 290)
            ax.plot_wireframe(S, T, Z, rstride=1, cstride=1)
            ax.plot_surface(S,
                            T,
                            Z,
                            facecolors=cm.jet(Z),
                            linewidth=0.001,
                            rstride=1,
                            cstride=1,
                            alpha=0.75)
            ax.set_zlim3d(0, Z.max())
            ax.set_xlabel('Stock Price')
            ax.set_ylabel('Time to Expiration')
            ax.set_zlabel(LETTER)
            m = cm.ScalarMappable(cmap=cm.jet)
            m.set_array(Z)
            cbarDelta = plt.colorbar(m)

        except AssertionError:
            raise DataFormatError('Invalid Letter')
        except ValueError:
            raise DataFormatError(
                'Invalid Calculations for {} :: Something went wrong on our end :$'
                .format(LETTER))
Beispiel #16
0
from pandas_datareader.data import Options
import pandas as pd
from pandas import DataFrame
import datetime
import csv
import time
import sys

tickers = pd.read_csv('nxxx.csv', index_col=[0]) #List of Nyse symbols, Add Nasdaq
money_list = [] #List from which we send option symbols to a .csv file

for i in tickers.index:
    option = Options(i,'yahoo')
    data = option.get_all_data()
    
    # The returned data is a pandas DataFrame: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
    # RTFM
    
    if not data.empty :
        i = 0
        while i < 5:

            try:
                
                #money_list.append(data[data.Vol > 1000].index.get_level_values('Symbol'))
                print data[Symbol] 

            except Exception as e:
                print "ERROR: " + str(e)
            
            time.sleep(1)
Beispiel #17
0
def get_data():
    spy = Options('spy', 'yahoo')
    chain = spy.get_all_data()
    filename = './spy_' + strftime("%Y-%m-%d %H:%M:%S", gmtime()) + '.bin'
    pickle_store(chain, filename)
import pandas as pd
import pandas.io.data as web
import numpy as np
import datetime
import csv
import os
import urllib
import re
from pandas_datareader.data import Options
tsla = Options('TSLA', 'yahoo')
data = tsla.get_all_data()
data.iloc[0:5, 0:5]
Beispiel #19
0
def Option_data(options=None, n=2000):
    '''
    Get option data from Yahoo Finance
    Remove incomplete option data and outliers, provide a concise data description,
    calculate Time to Maturity, and save the clean data as a csv data file
    clean criteria: Last_Trade_Date = 1/1/1970
    clean outliers (implied volatility > 2)
    :param options: enter one name or a ticker name list,
            or randomly select all options of n tickers if no option entered
    :param n: number of tickers, default 2000
    :return: option data review and save as a csv file
    '''

    data = pd.DataFrame()
    if options is None:
        df = pd.read_csv('ticker_list.csv')
        company = df['Symbol']
        i = 0
        selected_list = []
        while i < n:
            if n > len(df):
                print(
                    '\nPlease select fewer tickers, the maximum number of tickers is '
                    + str(len(df)))
                break
            name_list = set(company.sample(n - i).tolist())
            for item in (name_list - set(selected_list)):
                try:
                    name = Options(item, 'yahoo')
                    ticker = name.get_all_data()
                    data = data.append(ticker)
                    i += 1
                except:
                    pass
                continue
            selected_list = data.Underlying.tolist()
    else:
        if type(options) is str:  #only select one ticker
            try:
                name = Options(options, 'yahoo')
                data = name.get_all_data()
            except:
                print(str(options) + ' is not optionable')
        else:
            for item in list(options):  # select a list of tickers
                try:
                    name = Options(item, 'yahoo')
                    ticker = name.get_all_data()
                    data = data.append(ticker)
                except:
                    (str(options) + ' is not optionable')
                continue
    del data['JSON']

    df = data.dropna()
    df['Last_Trade_Date'] = pd.to_datetime(df['Last_Trade_Date'])
    df = df[df['Last_Trade_Date'].dt.year != 1970]
    df = df[df['IV'] <= 2]
    df = df[df['Last'] != 0]
    df['T'] = (pd.to_datetime(df['Expiry']) -
               pd.to_datetime(df['Quote_Time'])) / np.timedelta64(1, 'Y')
    df.to_csv('option_clean.csv')
    print df.describe()
    return df