Beispiel #1
0
def get_missing_items(summary) -> list:
    image_format = config["plot"]["image_format"].get(str)
    items = []
    for key, item in summary["missing"].items():
        items.append(
            # TODO: Add informative caption
            Image(
                item["matrix"],
                image_format=image_format,
                alt=item["name"],
                name=item["name"],
                anchor_id=key,
            ))

    return items
Beispiel #2
0
def render_categorical_length(summary, varid, image_format):
    length_table = Table(
        [
            {
                "name": "Max length",
                "value": summary["max_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Median length",
                "value": summary["median_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Mean length",
                "value": summary["mean_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Min length",
                "value": summary["min_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
        ],
        name="Length",
        anchor_id=f"{varid}lengthstats",
    )

    length = Image(
        histogram(*summary["histogram_length"]),
        image_format=image_format,
        alt="length histogram",
        name="Length",
        caption="Histogram of lengths of the category",
        anchor_id=f"{varid}length",
    )

    length_tab = Container(
        [length, length_table],
        anchor_id=f"{varid}tbl",
        name="Length",
        sequence_type="grid",
    )
    return length_tab
Beispiel #3
0
def render_categorical_length(summary, varid, image_format):
    length_table = Table(
        [
            {
                "name": "最大长度",
                "value": summary["max_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "中位长度",
                "value": summary["median_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "平均长度",
                "value": summary["mean_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "最小长度",
                "value": summary["min_length"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
        ],
        name="长度",
        anchor_id=f"{varid}lengthstats",
    )

    length = Image(
        histogram(*summary["histogram_length"]),
        image_format=image_format,
        alt="Scatter",
        name="Length",
        anchor_id=f"{varid}length",
    )

    length_tab = Container(
        [length, length_table],
        anchor_id=f"{varid}tbl",
        name="长度",
        sequence_type="grid",
    )
    return length_tab
Beispiel #4
0
def render_categorical_length(config: Settings, summary: dict,
                              varid: str) -> Tuple[Renderable, Renderable]:
    length_table = Table(
        [
            {
                "name": "Max length",
                "value": fmt_number(summary["max_length"]),
                "alert": False,
            },
            {
                "name": "Median length",
                "value": fmt_number(summary["median_length"]),
                "alert": False,
            },
            {
                "name":
                "Mean length",
                "value":
                fmt_numeric(summary["mean_length"],
                            precision=config.report.precision),
                "alert":
                False,
            },
            {
                "name": "Min length",
                "value": fmt_number(summary["min_length"]),
                "alert": False,
            },
        ],
        name="Length",
        anchor_id=f"{varid}lengthstats",
    )

    length_histo = Image(
        histogram(config, *summary["histogram_length"]),
        image_format=config.plot.image_format,
        alt="length histogram",
        name="Length",
        caption="Histogram of lengths of the category",
        anchor_id=f"{varid}length",
    )

    return length_table, length_histo
Beispiel #5
0
def get_scatter_matrix(scatter_matrix: dict) -> list:
    """Returns the interaction components for the report

    Args:
        scatter_matrix: a nested dict containing the scatter plots

    Returns:
        A list of components for the interaction section of the report
    """
    image_format = config["plot"]["image_format"].get(str)

    titems = []

    alphanum = re.compile("[^a-zA-Z\s]")

    def clean_name(name):
        return alphanum.sub("", name).replace(" ", "_")

    for x_col, y_cols in scatter_matrix.items():
        items = []
        for y_col, splot in y_cols.items():
            items.append(
                Image(
                    splot,
                    image_format=image_format,
                    alt=f"{x_col} x {y_col}",
                    anchor_id=f"interactions_{clean_name(x_col)}_{clean_name(y_col)}",
                    name=y_col,
                )
            )

        titems.append(
            Container(
                items,
                sequence_type="tabs" if len(items) <= 10 else "select",
                name=x_col,
                nested=len(scatter_matrix) > 10,
                anchor_id=f"interactions_{clean_name(x_col)}",
            )
        )
    return titems
def get_missing_items(summary) -> list:
    """Return the missing diagrams

    Args:
        summary: the dataframe summary

    Returns:
        A list with the missing diagrams
    """
    image_format = config["plot"]["image_format"].get(str)
    items = []
    for key, item in summary["missing"].items():
        items.append(
            # TODO: Add informative caption
            Image(
                item["matrix"],
                image_format=image_format,
                alt=item["name"],
                name=item["name"],
                anchor_id=key,
            ))

    return items
Beispiel #7
0
def render_categorical_frequency(summary, varid, image_format):
    frequency_table = Table(
        [
            {
                "name": "Unique",
                "value":
                f"{summary['n_unique']} {help('The number of unique values (all values that occur exactly once in the dataset).')}",
                "fmt": "raw",
                "alert": "n_unique" in summary["warn_fields"],
            },
            {
                "name": "Unique (%)",
                "value": summary["p_unique"],
                "fmt": "fmt_percent",
                "alert": "p_unique" in summary["warn_fields"],
            },
        ],
        name="Unique",
        anchor_id=f"{varid}uniquenessstats",
    )

    frequencies = Image(
        histogram(*summary["histogram_frequencies"]),
        image_format=image_format,
        alt="frequencies histogram",
        name="Frequencies histogram",
        caption="Frequencies of value counts",
        anchor_id=f"{varid}frequencies",
    )

    frequency_tab = Container(
        [frequencies, frequency_table],
        anchor_id=f"{varid}tbl",
        name="Overview",
        sequence_type="grid",
    )
    return frequency_tab
Beispiel #8
0
def get_scatter_matrix(scatter_matrix):
    image_format = config["plot"]["image_format"].get(str)

    titems = []
    for x_col, y_cols in scatter_matrix.items():
        items = []
        for y_col, splot in y_cols.items():
            items.append(
                Image(
                    splot,
                    image_format=image_format,
                    alt=f"{x_col} x {y_col}",
                    anchor_id=f"interactions_{x_col}_{y_col}",
                    name=y_col,
                ))

        titems.append(
            Container(
                items,
                sequence_type="tabs",
                name=x_col,
                anchor_id=f"interactions_{x_col}",
            ))
    return titems
def render_count(summary):
    template_variables = render_common(summary)
    image_format = config["plot"]["image_format"].get(str)

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Real number (&Ropf; / &Ropf;<sub>&ge;0</sub>)",
        summary["warnings"],
    )

    table1 = Table([
        {
            "name": "Distinct count",
            "value": summary["n_unique"],
            "fmt": "fmt",
            "alert": False,
        },
        {
            "name": "Unique (%)",
            "value": summary["p_unique"],
            "fmt": "fmt_percent",
            "alert": False,
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt",
            "alert": False,
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
            "alert": False,
        },
    ])

    table2 = Table([
        {
            "name": "Mean",
            "value": summary["mean"],
            "fmt": "fmt",
            "alert": False
        },
        {
            "name": "Minimum",
            "value": summary["min"],
            "fmt": "fmt",
            "alert": False
        },
        {
            "name": "Maximum",
            "value": summary["max"],
            "fmt": "fmt",
            "alert": False
        },
        {
            "name": "Zeros",
            "value": summary["n_zeros"],
            "fmt": "fmt",
            "alert": False,
        },
        {
            "name": "Zeros (%)",
            "value": summary["p_zeros"],
            "fmt": "fmt_percent",
            "alert": False,
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
            "alert": False,
        },
    ])

    # TODO: replace with SmallImage...
    mini_histo = Image(
        mini_histogram(summary["histogram_data"], summary,
                       summary["histogram_bins"]),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Sequence([info, table1, table2, mini_histo],
                                         sequence_type="grid")

    quantile_statistics = {
        "name":
        "Quantile statistics",
        "items": [
            {
                "name": "Minimum",
                "value": summary["min"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "5-th percentile",
                "value": summary["quantile_5"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Q1",
                "value": summary["quantile_25"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "median",
                "value": summary["quantile_50"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Q3",
                "value": summary["quantile_75"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "95-th percentile",
                "value": summary["quantile_95"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Maximum",
                "value": summary["max"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Range",
                "value": summary["range"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Interquartile range",
                "value": summary["iqr"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
        ],
    }

    descriptive_statistics = {
        "name":
        "Descriptive statistics",
        "items": [
            {
                "name": "Standard deviation",
                "value": summary["std"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Coefficient of variation",
                "value": summary["cv"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Kurtosis",
                "value": summary["kurt"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Mean",
                "value": summary["mean"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "MAD",
                "value": summary["mad"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Skewness",
                "value": summary["skew"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Sum",
                "value": summary["sum"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Variance",
                "value": summary["var"],
                "fmt": "fmt_numeric"
            },
        ],
    }

    # TODO: Make sections data structure
    # statistics = ItemRenderer(
    #     'statistics',
    #     'Statistics',
    #     'table',
    #     [
    #         quantile_statistics,
    #         descriptive_statistics
    #     ]
    # )

    seqs = [
        Image(
            histogram(summary["histogram_data"], summary,
                      summary["histogram_bins"]),
            image_format=image_format,
            alt="Histogram",
            caption="<strong>Histogram with fixed size bins</strong> (bins={})"
            .format(summary["histogram_bins"]),
            name="Histogram",
            anchor_id="histogram",
        )
    ]

    fq = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common values",
        anchor_id="common_values",
    )

    evs = Sequence(
        [
            FrequencyTable(
                template_variables["firstn_expanded"],
                name="Minimum 5 values",
                anchor_id="firstn",
            ),
            FrequencyTable(
                template_variables["lastn_expanded"],
                name="Maximum 5 values",
                anchor_id="lastn",
            ),
        ],
        sequence_type="tabs",
        name="Extreme values",
        anchor_id="extreme_values",
    )

    if "histogram_bins_bayesian_blocks" in summary:
        histo_dyn = Image(
            histogram(
                summary["histogram_data"],
                summary,
                summary["histogram_bins_bayesian_blocks"],
            ),
            image_format=image_format,
            alt="Histogram",
            caption=
            '<strong>Histogram with variable size bins</strong> (bins={}, <a href="https://ui.adsabs.harvard.edu/abs/2013ApJ...764..167S/abstract" target="_blank">"bayesian blocks"</a> binning strategy used)'
            .format(
                fmt_array(summary["histogram_bins_bayesian_blocks"],
                          threshold=5)),
            name="Dynamic Histogram",
            anchor_id="dynamic_histogram",
        )

        seqs.append(histo_dyn)

    template_variables["bottom"] = Sequence(
        [
            # statistics,
            Sequence(seqs,
                     sequence_type="tabs",
                     name="Histogram(s)",
                     anchor_id="histograms"),
            fq,
            evs,
        ],
        sequence_type="tabs",
        anchor_id=summary["varid"],
    )

    return template_variables
def render_real(summary):
    varid = summary["varid"]
    template_variables = render_common(summary)
    image_format = config["plot"]["image_format"].get(str)

    if summary["min"] >= 0:
        name = "Real number (&Ropf;<sub>&ge;0</sub>)"
    else:
        name = "Real number (&Ropf;)"

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        name,
        summary["warnings"],
        summary["description"],
    )

    table1 = Table([
        {
            "name": "Distinct",
            "value": summary["n_distinct"],
            "fmt": "fmt",
            "alert": "n_distinct" in summary["warn_fields"],
        },
        {
            "name": "Distinct (%)",
            "value": summary["p_distinct"],
            "fmt": "fmt_percent",
            "alert": "p_distinct" in summary["warn_fields"],
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt",
            "alert": "n_missing" in summary["warn_fields"],
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
            "alert": "p_missing" in summary["warn_fields"],
        },
        {
            "name": "Infinite",
            "value": summary["n_infinite"],
            "fmt": "fmt",
            "alert": "n_infinite" in summary["warn_fields"],
        },
        {
            "name": "Infinite (%)",
            "value": summary["p_infinite"],
            "fmt": "fmt_percent",
            "alert": "p_infinite" in summary["warn_fields"],
        },
        {
            "name": "Mean",
            "value": summary["mean"],
            "fmt": "fmt_numeric",
            "alert": False,
        },
    ])

    table2 = Table([
        {
            "name": "Minimum",
            "value": summary["min"],
            "fmt": "fmt_numeric",
            "alert": False,
        },
        {
            "name": "Maximum",
            "value": summary["max"],
            "fmt": "fmt_numeric",
            "alert": False,
        },
        {
            "name": "Zeros",
            "value": summary["n_zeros"],
            "fmt": "fmt",
            "alert": "n_zeros" in summary["warn_fields"],
        },
        {
            "name": "Zeros (%)",
            "value": summary["p_zeros"],
            "fmt": "fmt_percent",
            "alert": "p_zeros" in summary["warn_fields"],
        },
        {
            "name": "Negative",
            "value": summary["n_negative"],
            "fmt": "fmt",
            "alert": False,
        },
        {
            "name": "Negative (%)",
            "value": summary["p_negative"],
            "fmt": "fmt_percent",
            "alert": False,
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
            "alert": False,
        },
    ])

    mini_histo = Image(
        mini_histogram(*summary["histogram"]),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container([info, table1, table2, mini_histo],
                                          sequence_type="grid")

    quantile_statistics = Table(
        [
            {
                "name": "Minimum",
                "value": summary["min"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "5-th percentile",
                "value": summary["5%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Q1",
                "value": summary["25%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "median",
                "value": summary["50%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Q3",
                "value": summary["75%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "95-th percentile",
                "value": summary["95%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Maximum",
                "value": summary["max"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Range",
                "value": summary["range"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Interquartile range (IQR)",
                "value": summary["iqr"],
                "fmt": "fmt_numeric",
            },
        ],
        name="Quantile statistics",
    )

    descriptive_statistics = Table(
        [
            {
                "name": "Standard deviation",
                "value": summary["std"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Coefficient of variation (CV)",
                "value": summary["cv"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Kurtosis",
                "value": summary["kurtosis"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Mean",
                "value": summary["mean"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Median Absolute Deviation (MAD)",
                "value": summary["mad"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Skewness",
                "value": summary["skewness"],
                "fmt": "fmt_numeric",
                "class":
                "alert" if "skewness" in summary["warn_fields"] else "",
            },
            {
                "name": "Sum",
                "value": summary["sum"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Variance",
                "value": summary["variance"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Monotonicity",
                "value": summary["monotonic"],
                "fmt": "fmt_monotonic",
            },
        ],
        name="Descriptive statistics",
    )

    statistics = Container(
        [quantile_statistics, descriptive_statistics],
        anchor_id=f"{varid}statistics",
        name="Statistics",
        sequence_type="grid",
    )

    hist = Image(
        histogram(*summary["histogram"]),
        image_format=image_format,
        alt="Histogram",
        caption=
        f"<strong>Histogram with fixed size bins</strong> (bins={len(summary['histogram'][1]) - 1})",
        name="Histogram",
        anchor_id=f"{varid}histogram",
    )

    fq = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common values",
        anchor_id=f"{varid}common_values",
        redact=False,
    )

    evs = Container(
        [
            FrequencyTable(
                template_variables["firstn_expanded"],
                name="Minimum 5 values",
                anchor_id=f"{varid}firstn",
                redact=False,
            ),
            FrequencyTable(
                template_variables["lastn_expanded"],
                name="Maximum 5 values",
                anchor_id=f"{varid}lastn",
                redact=False,
            ),
        ],
        sequence_type="tabs",
        name="Extreme values",
        anchor_id=f"{varid}extreme_values",
    )

    template_variables["bottom"] = Container(
        [statistics, hist, fq, evs],
        sequence_type="tabs",
        anchor_id=f"{varid}bottom",
    )

    return template_variables
Beispiel #11
0
def render_image(config: Settings, summary: dict) -> dict:
    varid = summary["varid"]
    n_freq_table_max = config.n_freq_table_max
    redact = config.vars.cat.redact

    template_variables = render_file(config, summary)

    # Top
    template_variables["top"].content["items"][0].content["var_type"] = "Image"

    # Bottom
    image_items = []
    """
    Min Width           Min Height          Min Area
    Mean Width          Mean Height         Mean Height
    Median Width        Median Height       Median Height
    Max Width           Max Height          Max Height

    All dimension properties are in pixels.
    """

    image_shape_items = [
        Container(
            [
                Table([
                    {
                        "name":
                        "Min width",
                        "value":
                        fmt_numeric(summary["min_width"],
                                    precision=config.report.precision),
                        "alert":
                        False,
                    },
                    {
                        "name":
                        "Median width",
                        "value":
                        fmt_numeric(
                            summary["median_width"],
                            precision=config.report.precision,
                        ),
                        "alert":
                        False,
                    },
                    {
                        "name":
                        "Max width",
                        "value":
                        fmt_numeric(summary["max_width"],
                                    precision=config.report.precision),
                        "alert":
                        False,
                    },
                ]),
                Table([
                    {
                        "name":
                        "Min height",
                        "value":
                        fmt_numeric(summary["min_height"],
                                    precision=config.report.precision),
                        "alert":
                        False,
                    },
                    {
                        "name":
                        "Median height",
                        "value":
                        fmt_numeric(
                            summary["median_height"],
                            precision=config.report.precision,
                        ),
                        "alert":
                        False,
                    },
                    {
                        "name":
                        "Max height",
                        "value":
                        fmt_numeric(summary["max_height"],
                                    precision=config.report.precision),
                        "alert":
                        False,
                    },
                ]),
                Table([
                    {
                        "name":
                        "Min area",
                        "value":
                        fmt_numeric(summary["min_area"],
                                    precision=config.report.precision),
                        "alert":
                        False,
                    },
                    {
                        "name":
                        "Median area",
                        "value":
                        fmt_numeric(
                            summary["median_area"],
                            precision=config.report.precision,
                        ),
                        "alert":
                        False,
                    },
                    {
                        "name":
                        "Max area",
                        "value":
                        fmt_numeric(summary["max_area"],
                                    precision=config.report.precision),
                        "alert":
                        False,
                    },
                ]),
            ],
            anchor_id=f"{varid}tbl",
            name="Overview",
            sequence_type="grid",
        ),
        Image(
            scatter_series(config, summary["image_dimensions"]),
            image_format=config.plot.image_format,
            alt="Scatter plot of image sizes",
            caption="Scatter plot of image sizes",
            name="Scatter plot",
            anchor_id=f"{varid}image_dimensions_scatter",
        ),
        FrequencyTable(
            freq_table(
                freqtable=summary["image_dimensions"].value_counts(),
                n=summary["n"],
                max_number_to_print=n_freq_table_max,
            ),
            name="Common values",
            anchor_id=f"{varid}image_dimensions_frequency",
            redact=False,
        ),
    ]

    image_shape = Container(
        image_shape_items,
        sequence_type="named_list",
        name="Dimensions",
        anchor_id=f"{varid}image_dimensions",
    )

    if "exif_keys_counts" in summary:
        items = [
            FrequencyTable(
                freq_table(
                    freqtable=pd.Series(summary["exif_keys_counts"]),
                    n=summary["n"],
                    max_number_to_print=n_freq_table_max,
                ),
                name="Exif keys",
                anchor_id=f"{varid}exif_keys",
                redact=redact,
            )
        ]
        for key, counts in summary["exif_data"].items():
            if key == "exif_keys":
                continue

            items.append(
                FrequencyTable(
                    freq_table(
                        freqtable=counts,
                        n=summary["n"],
                        max_number_to_print=n_freq_table_max,
                    ),
                    name=key,
                    anchor_id=f"{varid}_exif_{key}",
                    redact=redact,
                ))

        image_items.append(
            Container(
                items,
                anchor_id=f"{varid}exif_data",
                name="Exif data",
                sequence_type="named_list",
            ))

    image_items.append(image_shape)

    image_tab = Container(
        image_items,
        name="Image",
        sequence_type="tabs",
        anchor_id=f"{varid}image",
    )

    template_variables["bottom"].content["items"].append(image_tab)

    return template_variables
Beispiel #12
0
def render_categorical(config: Settings, summary: dict) -> dict:
    varid = summary["varid"]
    n_obs_cat = config.vars.cat.n_obs
    image_format = config.plot.image_format
    words = config.vars.cat.words
    characters = config.vars.cat.characters
    length = config.vars.cat.length

    template_variables = render_common(config, summary)

    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Categorical",
        summary["alerts"],
        summary["description"],
    )

    table = Table([
        {
            "name": "Distinct",
            "value": fmt(summary["n_distinct"]),
            "alert": "n_distinct" in summary["alert_fields"],
        },
        {
            "name": "Distinct (%)",
            "value": fmt_percent(summary["p_distinct"]),
            "alert": "p_distinct" in summary["alert_fields"],
        },
        {
            "name": "Missing",
            "value": fmt(summary["n_missing"]),
            "alert": "n_missing" in summary["alert_fields"],
        },
        {
            "name": "Missing (%)",
            "value": fmt_percent(summary["p_missing"]),
            "alert": "p_missing" in summary["alert_fields"],
        },
        {
            "name": "Memory size",
            "value": fmt_bytesize(summary["memory_size"]),
            "alert": False,
        },
    ])

    fqm = FrequencyTableSmall(
        freq_table(
            freqtable=summary["value_counts_without_nan"],
            n=summary["count"],
            max_number_to_print=n_obs_cat,
        ),
        redact=config.vars.cat.redact,
    )

    template_variables["top"] = Container([info, table, fqm],
                                          sequence_type="grid")

    # ============================================================================================

    frequency_table = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common Values",
        anchor_id=f"{varid}common_values",
        redact=config.vars.cat.redact,
    )

    unique_stats = render_categorical_frequency(config, summary, varid)

    overview_items = []

    if length:
        length_table, length_histo = render_categorical_length(
            config, summary, varid)
        overview_items.append(length_table)

    if characters:
        overview_table_char, unitab = render_categorical_unicode(
            config, summary, varid)
        overview_items.append(overview_table_char)

    overview_items.append(unique_stats)

    if not config.vars.cat.redact:
        rows = ("1st row", "2nd row", "3rd row", "4th row", "5th row")

        sample = Table(
            [{
                "name": name,
                "value": fmt(value),
                "alert": False,
            } for name, value in zip(rows, summary["first_rows"])],
            name="Sample",
        )
        overview_items.append(sample)

    string_items: List[Renderable] = [frequency_table]
    if length:
        string_items.append(length_histo)

    max_unique = config.plot.pie.max_unique
    if max_unique > 0 and summary["n_distinct"] <= max_unique:
        string_items.append(
            Image(
                pie_plot(
                    config,
                    summary["value_counts_without_nan"],
                    legend_kws={"loc": "upper right"},
                ),
                image_format=image_format,
                alt="Pie chart",
                name="Pie chart",
                anchor_id=f"{varid}pie_chart",
            ))

    bottom_items = [
        Container(
            overview_items,
            name="Overview",
            anchor_id=f"{varid}overview",
            sequence_type="batch_grid",
            batch_size=len(overview_items),
            titles=False,
        ),
        Container(
            string_items,
            name="Categories",
            anchor_id=f"{varid}string",
            sequence_type="batch_grid",
            batch_size=len(string_items),
        ),
    ]

    if words:
        woc = freq_table(
            freqtable=summary["word_counts"],
            n=summary["word_counts"].sum(),
            max_number_to_print=10,
        )

        fqwo = FrequencyTable(
            woc,
            name="Common words",
            anchor_id=f"{varid}cwo",
            redact=config.vars.cat.redact,
        )

        bottom_items.append(
            Container(
                [fqwo],
                name="Words",
                anchor_id=f"{varid}word",
                sequence_type="grid",
            ))

    if characters:
        bottom_items.append(
            Container(
                [unitab],
                name="Characters",
                anchor_id=f"{varid}characters",
                sequence_type="grid",
            ))

    # Bottom
    template_variables["bottom"] = Container(bottom_items,
                                             sequence_type="tabs",
                                             anchor_id=f"{varid}bottom")

    return template_variables
Beispiel #13
0
def get_correlation_items(summary) -> Optional[Renderable]:
    """Create the list of correlation items

    Args:
        summary: dict of correlations

    Returns:
        List of correlation items to show in the interface.
    """
    items: List[Renderable] = []

    pearson_description = (
        "The Pearson's correlation coefficient (<em>r</em>) is a measure of linear correlation "
        "between two variables. It's value lies between -1 and +1, -1 indicating total negative "
        "linear correlation, 0 indicating no linear correlation and 1 indicating total positive "
        "linear correlation. Furthermore, <em>r</em> is invariant under separate changes in location "
        "and scale of the two variables, implying that for a linear function the angle to the "
        "x-axis does not affect <em>r</em>.<br /><br />To calculate <em>r</em> for two "
        "variables <em>X</em> and <em>Y</em>, one divides the covariance of <em>X</em> and "
        "<em>Y</em> by the product of their standard deviations. ")
    spearman_description = """The Spearman's rank correlation coefficient (<em>ρ</em>) is a measure of monotonic 
    correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than 
    Pearson's <em>r</em>. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 
    0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.<br /><br />To 
    calculate <em>ρ</em> for two variables <em>X</em> and <em>Y</em>, one divides the covariance of the rank 
    variables of <em>X</em> and <em>Y</em> by the product of their standard deviations. """

    kendall_description = """Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation 
    coefficient (<em>τ</em>) measures ordinal association between two variables. It's value lies between -1 and +1, 
    -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.
    <br /><br />To calculate <em>τ</em> for two variables <em>X</em> and <em>Y</em>, one determines the number of 
    concordant and discordant pairs of observations. <em>τ</em> is given by the number of concordant pairs minus the 
    discordant pairs divided by the total number of pairs."""

    phi_k_description = """Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case
    of a bivariate normal input distribution. There is extensive documentation available <a href='https://phik.readthedocs.io/en/latest/index.html'>here</a>."""

    cramers_description = """Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association.
    The empirical estimators used for Cramér's V have been proved to be biased, even for large samples.
    We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found <a href='http://stats.lse.ac.uk/bergsma/pdf/cramerV3.pdf'>here</a>."""

    key_to_data = {
        "pearson": (-1, "Pearson's r", pearson_description),
        "spearman": (-1, "Spearman's ρ", spearman_description),
        "kendall": (-1, "Kendall's τ", kendall_description),
        "phi_k": (0, "Phik (φk)", phi_k_description),
        "cramers": (0, "Cramér's V (φc)", cramers_description),
    }

    image_format = config["plot"]["image_format"].get(str)

    for key, item in summary["correlations"].items():
        vmin, name, description = key_to_data[key]

        diagram = Image(
            plot.correlation_matrix(item, vmin=vmin),
            image_format=image_format,
            alt=name,
            anchor_id=f"{key}_diagram",
            name=name,
            classes="correlation-diagram",
        )

        if len(description) > 0:
            desc = HTML(
                f'<div style="padding:20px" class="text-muted"><h3>{name}</h3>{description}</div>',
                anchor_id=f"{key}_html",
                classes="correlation-description",
            )

            tbl = Container([diagram, desc],
                            anchor_id=key,
                            name=name,
                            sequence_type="grid")

            items.append(tbl)
        else:
            items.append(diagram)

    corr = Container(
        items,
        sequence_type="tabs",
        name="Correlations Tab",
        anchor_id="correlations_tab",
    )

    if len(items) > 0:
        btn = ToggleButton(
            "Toggle correlation descriptions",
            anchor_id="toggle-correlation-description",
            name="Toggle correlation descriptions",
        )

        return Collapse(name="Correlations",
                        anchor_id="correlations",
                        button=btn,
                        item=corr)
    else:
        return None
Beispiel #14
0
def get_correlation_items(summary) -> Optional[Renderable]:
    """Create the list of correlation items

    Args:
        summary: dict of correlations

    Returns:
        List of correlation items to show in the interface.
    """
    items = get_items()

    pearson_description = (
        "The Pearson's correlation coefficient (<em>r</em>) is a measure of linear correlation "
        "between two variables. It's value lies between -1 and +1, -1 indicating total negative "
        "linear correlation, 0 indicating no linear correlation and 1 indicating total positive "
        "linear correlation. Furthermore, <em>r</em> is invariant under separate changes in location "
        "and scale of the two variables, implying that for a linear function the angle to the "
        "x-axis does not affect <em>r</em>.<br /><br />To calculate <em>r</em> for two "
        "variables <em>X</em> and <em>Y</em>, one divides the covariance of <em>X</em> and "
        "<em>Y</em> by the product of their standard deviations. ")
    spearman_description = """The Spearman's rank correlation coefficient (<em>ρ</em>) is a measure of monotonic 
    correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than 
    Pearson's <em>r</em>. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 
    0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.<br /><br />To 
    calculate <em>ρ</em> for two variables <em>X</em> and <em>Y</em>, one divides the covariance of the rank 
    variables of <em>X</em> and <em>Y</em> by the product of their standard deviations. """

    kendall_description = """Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation 
    coefficient (<em>τ</em>) measures ordinal association between two variables. It's value lies between -1 and +1, 
    -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.
    <br /><br />To calculate <em>τ</em> for two variables <em>X</em> and <em>Y</em>, one determines the number of 
    concordant and discordant pairs of observations. <em>τ</em> is given by the number of concordant pairs minus the 
    discordant pairs divided by the total number of pairs."""

    key_to_data = {
        "pearson": (-1, "Pearson's r", pearson_description),
        "spearman": (-1, "Spearman's ρ", spearman_description),
        "kendall": (-1, "Kendall's τ", kendall_description),
        "phi_k": (0, "Phik (φk)", ""),
        "cramers": (0, "Cramér's V (φc)", ""),
        "recoded": (0, "Recoded", ""),
    }

    image_format = config["plot"]["image_format"].get(str)

    for key, item in summary["correlations"].items():
        vmin, name, description = key_to_data[key]

        diagram = Image(
            plot.correlation_matrix(item, vmin=vmin),
            image_format=image_format,
            alt=name,
            anchor_id="{key}_diagram".format(key=key),
            name=name,
            classes="correlation-diagram",
        )

        if len(description) > 0:
            desc = HTML(
                '<div style="padding:20px" class="text-muted"><h3>{name}</h3>{description}</div>'
                .format(description=description, name=name),
                anchor_id="{key}_html".format(key=key),
                classes="correlation-description",
            )

            tbl = Sequence([diagram, desc],
                           anchor_id=key,
                           name=name,
                           sequence_type="grid")

            items.append(tbl)
        else:
            items.append(diagram)

    corr = Sequence(
        items,
        sequence_type="tabs",
        name="Correlations Tab",
        anchor_id="correlations_tab",
    )

    if len(items) > 0:
        btn = ToggleButton(
            "Toggle correlation descriptions",
            anchor_id="toggle-correlation-description",
            name="Toggle correlation descriptions",
        )

        return Collapse(name="Correlations",
                        anchor_id="correlations",
                        button=btn,
                        item=corr)
    else:
        return None
def render_date(summary):
    varid = summary["varid"]
    # TODO: render common?
    template_variables = {}

    image_format = config["plot"]["image_format"].get(str)

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Date",
        summary["warnings"],
        summary["description"],
    )

    table1 = Table([
        {
            "name": "Distinct count",
            "value": summary["n_unique"],
            "fmt": "fmt",
            "alert": False,
        },
        {
            "name": "Unique (%)",
            "value": summary["p_unique"],
            "fmt": "fmt_percent",
            "alert": False,
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt",
            "alert": False,
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
            "alert": False,
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
            "alert": False,
        },
    ])

    table2 = Table([
        {
            "name": "Minimum",
            "value": summary["min"],
            "fmt": "fmt",
            "alert": False
        },
        {
            "name": "Maximum",
            "value": summary["max"],
            "fmt": "fmt",
            "alert": False
        },
    ])

    mini_histo = Image(
        mini_histogram(summary["histogram_data"], summary,
                       summary["histogram_bins"]),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container([info, table1, table2, mini_histo],
                                          sequence_type="grid")

    # Bottom
    bottom = Container(
        [
            Image(
                histogram(summary["histogram_data"], summary,
                          summary["histogram_bins"]),
                image_format=image_format,
                alt="Histogram",
                caption="Histogram",
                name="Histogram",
                anchor_id=f"{varid}histogram",
            )
        ],
        sequence_type="tabs",
        anchor_id=summary["varid"],
    )

    template_variables["bottom"] = bottom

    return template_variables
Beispiel #16
0
def render_count(summary):
    varid = summary["varid"]
    template_variables = render_common(summary)
    image_format = config["plot"]["image_format"].get(str)

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Real number (&Ropf; / &Ropf;<sub>&ge;0</sub>)",
        summary["warnings"],
        summary["description"],
    )

    table1 = Table(
        [
            {
                "name": "Distinct",
                "value": summary["n_distinct"],
                "fmt": "fmt",
                "alert": False,
            },
            {
                "name": "Distinct (%)",
                "value": summary["p_distinct"],
                "fmt": "fmt_percent",
                "alert": False,
            },
            {
                "name": "Missing",
                "value": summary["n_missing"],
                "fmt": "fmt",
                "alert": False,
            },
            {
                "name": "Missing (%)",
                "value": summary["p_missing"],
                "fmt": "fmt_percent",
                "alert": False,
            },
        ]
    )

    table2 = Table(
        [
            {
                "name": "Mean",
                "value": summary["mean"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Minimum",
                "value": summary["min"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Maximum",
                "value": summary["max"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Zeros",
                "value": summary["n_zeros"],
                "fmt": "fmt",
                "alert": False,
            },
            {
                "name": "Zeros (%)",
                "value": summary["p_zeros"],
                "fmt": "fmt_percent",
                "alert": False,
            },
            {
                "name": "Memory size",
                "value": summary["memory_size"],
                "fmt": "fmt_bytesize",
                "alert": False,
            },
        ]
    )

    mini_histo = Image(
        mini_histogram(*summary["histogram"]),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container(
        [info, table1, table2, mini_histo], sequence_type="grid"
    )

    quantile_statistics = {
        "name": "Quantile statistics",
        "items": [
            {
                "name": "Minimum",
                "value": summary["min"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "5-th percentile",
                "value": summary["quantile_5"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Q1",
                "value": summary["quantile_25"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "median",
                "value": summary["quantile_50"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Q3",
                "value": summary["quantile_75"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "95-th percentile",
                "value": summary["quantile_95"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Maximum",
                "value": summary["max"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Range",
                "value": summary["range"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "Interquartile range",
                "value": summary["iqr"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
        ],
    }

    descriptive_statistics = {
        "name": "Descriptive statistics",
        "items": [
            {
                "name": "Standard deviation",
                "value": summary["std"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Coefficient of variation",
                "value": summary["cv"],
                "fmt": "fmt_numeric",
            },
            {"name": "Kurtosis", "value": summary["kurt"], "fmt": "fmt_numeric"},
            {"name": "Mean", "value": summary["mean"], "fmt": "fmt_numeric"},
            {"name": "MAD", "value": summary["mad"], "fmt": "fmt_numeric"},
            {"name": "Skewness", "value": summary["skew"], "fmt": "fmt_numeric"},
            {"name": "Sum", "value": summary["sum"], "fmt": "fmt_numeric"},
            {"name": "Variance", "value": summary["var"], "fmt": "fmt_numeric"},
        ],
    }

    # TODO: Make sections data structure
    # statistics = ItemRenderer(
    #     'statistics',
    #     'Statistics',
    #     'table',
    #     [
    #         quantile_statistics,
    #         descriptive_statistics
    #     ]
    # )

    seqs = [
        Image(
            histogram(*summary["histogram"]),
            image_format=image_format,
            alt="Histogram",
            caption=f"<strong>Histogram with fixed size bins</strong> (bins={len(summary['histogram'][1]) - 1})",
            name="Histogram",
            anchor_id="histogram",
        )
    ]

    fq = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common values",
        anchor_id="common_values",
        redact=False,
    )

    evs = Container(
        [
            FrequencyTable(
                template_variables["firstn_expanded"],
                name="Minimum 5 values",
                anchor_id="firstn",
                redact=False,
            ),
            FrequencyTable(
                template_variables["lastn_expanded"],
                name="Maximum 5 values",
                anchor_id="lastn",
                redact=False,
            ),
        ],
        sequence_type="tabs",
        name="Extreme values",
        anchor_id="extreme_values",
    )

    template_variables["bottom"] = Container(
        [
            # statistics,
            Container(
                seqs, sequence_type="tabs", name="Histogram(s)", anchor_id="histograms"
            ),
            fq,
            evs,
        ],
        sequence_type="tabs",
        anchor_id=summary["varid"],
    )

    return template_variables
def render_categorical(summary):
    varid = summary["varid"]
    n_obs_cat = config["vars"]["cat"]["n_obs"].get(int)
    image_format = config["plot"]["image_format"].get(str)

    template_variables = render_common(summary)

    # TODO: merge with boolean
    mini_freq_table_rows = freq_table(
        freqtable=summary["value_counts"],
        n=summary["count"],
        max_number_to_print=n_obs_cat,
    )

    # Top
    # Element composition
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Categorical",
        summary["warnings"],
        summary["description"],
    )

    table = Table([
        {
            "name": "Distinct count",
            "value": summary["n_unique"],
            "fmt": "fmt",
            "alert": "n_unique" in summary["warn_fields"],
        },
        {
            "name": "Unique (%)",
            "value": summary["p_unique"],
            "fmt": "fmt_percent",
            "alert": "p_unique" in summary["warn_fields"],
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt",
            "alert": "n_missing" in summary["warn_fields"],
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
            "alert": "p_missing" in summary["warn_fields"],
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
            "alert": False,
        },
    ])

    fqm = FrequencyTableSmall(mini_freq_table_rows)

    # TODO: settings 3,3,6
    template_variables["top"] = Container([info, table, fqm],
                                          sequence_type="grid")

    # Bottom
    items = []
    frequency_table = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common Values",
        anchor_id=f"{varid}common_values",
    )

    items.append(frequency_table)

    check_length = config["vars"]["cat"]["length"].get(bool)
    if check_length:
        length_table = Table(
            [
                {
                    "name": "Max length",
                    "value": summary["max_length"],
                    "fmt": "fmt_numeric",
                    "alert": False,
                },
                {
                    "name": "Median length",
                    "value": summary["median_length"],
                    "fmt": "fmt_numeric",
                    "alert": False,
                },
                {
                    "name": "Mean length",
                    "value": summary["mean_length"],
                    "fmt": "fmt_numeric",
                    "alert": False,
                },
                {
                    "name": "Min length",
                    "value": summary["min_length"],
                    "fmt": "fmt_numeric",
                    "alert": False,
                },
            ],
            name="Length",
            anchor_id=f"{varid}lengthstats",
        )

        histogram_bins = 10

        length = Image(
            histogram(summary["length"], summary, histogram_bins),
            image_format=image_format,
            alt="Scatter",
            name="Length",
            anchor_id=f"{varid}length",
        )

        length_tab = Container(
            [length, length_table],
            anchor_id=f"{varid}tbl",
            name="Length",
            sequence_type="grid",
        )

        items.append(length_tab)

    check_unicode = config["vars"]["cat"]["unicode"].get(bool)
    if check_unicode:
        n_freq_table_max = config["n_freq_table_max"].get(int)

        category_items = [
            FrequencyTable(
                freq_table(
                    freqtable=summary["category_alias_counts"],
                    n=summary["category_alias_counts"].sum(),
                    max_number_to_print=n_freq_table_max,
                ),
                name="Most occurring categories",
                anchor_id=f"{varid}category_long_values",
            )
        ]
        for category_alias_name, category_alias_counts in summary[
                "category_alias_char_counts"].items():
            category_alias_name = category_alias_name.replace("_", " ")
            category_items.append(
                FrequencyTable(
                    freq_table(
                        freqtable=category_alias_counts,
                        n=category_alias_counts.sum(),
                        max_number_to_print=n_freq_table_max,
                    ),
                    name=f"Most frequent {category_alias_name} characters",
                    anchor_id=
                    f"{varid}category_alias_values_{category_alias_name}",
                ))

        script_items = [
            FrequencyTable(
                freq_table(
                    freqtable=summary["script_counts"],
                    n=summary["script_counts"].sum(),
                    max_number_to_print=n_freq_table_max,
                ),
                name="Most occurring scripts",
                anchor_id=f"{varid}script_values",
            ),
        ]
        for script_name, script_counts in summary["script_char_counts"].items(
        ):
            script_items.append(
                FrequencyTable(
                    freq_table(
                        freqtable=script_counts,
                        n=script_counts.sum(),
                        max_number_to_print=n_freq_table_max,
                    ),
                    name=f"Most frequent {script_name} characters",
                    anchor_id=f"{varid}script_values_{script_name}",
                ))

        block_items = [
            FrequencyTable(
                freq_table(
                    freqtable=summary["block_alias_counts"],
                    n=summary["block_alias_counts"].sum(),
                    max_number_to_print=n_freq_table_max,
                ),
                name="Most occurring blocks",
                anchor_id=f"{varid}block_alias_values",
            )
        ]
        for block_name, block_counts in summary[
                "block_alias_char_counts"].items():
            block_items.append(
                FrequencyTable(
                    freq_table(
                        freqtable=block_counts,
                        n=block_counts.sum(),
                        max_number_to_print=n_freq_table_max,
                    ),
                    name=f"Most frequent {block_name} characters",
                    anchor_id=f"{varid}block_alias_values_{block_name}",
                ))

        citems = [
            Container(
                [
                    Table(
                        [
                            {
                                "name": "Unique unicode characters",
                                "value": summary["n_characters"],
                                "fmt": "fmt_numeric",
                                "alert": False,
                            },
                            {
                                "name":
                                'Unique unicode categories (<a target="_blank" href="https://en.wikipedia.org/wiki/Unicode_character_property#General_Category">?</a>)',
                                "value": summary["n_category"],
                                "fmt": "fmt_numeric",
                                "alert": False,
                            },
                            {
                                "name":
                                'Unique unicode scripts (<a target="_blank" href="https://en.wikipedia.org/wiki/Script_(Unicode)#List_of_scripts_in_Unicode">?</a>)',
                                "value": summary["n_scripts"],
                                "fmt": "fmt_numeric",
                                "alert": False,
                            },
                            {
                                "name":
                                'Unique unicode blocks (<a target="_blank" href="https://en.wikipedia.org/wiki/Unicode_block">?</a>)',
                                "value": summary["n_block_alias"],
                                "fmt": "fmt_numeric",
                                "alert": False,
                            },
                        ],
                        name="Overview of Unicode Properties",
                        caption=
                        "The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables. ",
                    ),
                ],
                anchor_id=f"{varid}character_overview",
                name="Overview",
                sequence_type="list",
            ),
            Container(
                [
                    FrequencyTable(
                        freq_table(
                            freqtable=summary["character_counts"],
                            n=summary["character_counts"].sum(),
                            max_number_to_print=n_freq_table_max,
                        ),
                        name="Most occurring characters",
                        anchor_id=f"{varid}character_frequency",
                    ),
                ],
                name="Characters",
                anchor_id=f"{varid}characters",
                sequence_type="named_list",
            ),
            Container(
                category_items,
                name="Categories",
                anchor_id=f"{varid}categories",
                sequence_type="named_list",
            ),
            Container(
                script_items,
                name="Scripts",
                anchor_id=f"{varid}scripts",
                sequence_type="named_list",
            ),
            Container(
                block_items,
                name="Blocks",
                anchor_id=f"{varid}blocks",
                sequence_type="named_list",
            ),
        ]

        characters = Container(
            citems,
            name="Unicode",
            sequence_type="tabs",
            anchor_id=f"{varid}unicode",
        )

        items.append(characters)

    template_variables["bottom"] = Container(items,
                                             sequence_type="tabs",
                                             anchor_id=f"{varid}bottom")

    return template_variables
def render_complex(summary):
    varid = summary["varid"]
    template_variables = {}
    image_format = config["plot"]["image_format"].get(str)

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Complex number (&Copf;)",
        summary["warnings"],
        summary["description"],
    )

    table1 = Table(
        [
            {"name": "Distinct", "value": summary["n_distinct"], "fmt": "fmt"},
            {
                "name": "Distinct (%)",
                "value": summary["p_distinct"],
                "fmt": "fmt_percent",
            },
            {"name": "Missing", "value": summary["n_missing"], "fmt": "fmt"},
            {
                "name": "Missing (%)",
                "value": summary["p_missing"],
                "fmt": "fmt_percent",
            },
            {
                "name": "Memory size",
                "value": summary["memory_size"],
                "fmt": "fmt_bytesize",
            },
        ]
    )

    table2 = Table(
        [
            {"name": "Mean", "value": summary["mean"], "fmt": "fmt_numeric"},
            {"name": "Minimum", "value": summary["min"], "fmt": "fmt_numeric"},
            {"name": "Maximum", "value": summary["max"], "fmt": "fmt_numeric"},
            {"name": "Zeros", "value": summary["n_zeros"], "fmt": "fmt_numeric"},
            {"name": "Zeros (%)", "value": summary["p_zeros"], "fmt": "fmt_percent"},
        ]
    )

    placeholder = HTML("")

    template_variables["top"] = Container(
        [info, table1, table2, placeholder], sequence_type="grid"
    )

    # Bottom
    items = [
        Image(
            scatter_complex(summary["scatter_data"]),
            image_format=image_format,
            alt="Scatterplot",
            caption="Scatterplot in the complex plane",
            name="Scatter",
            anchor_id=f"{varid}scatter",
        )
    ]

    bottom = Container(items, sequence_type="tabs", anchor_id=summary["varid"])

    template_variables["bottom"] = bottom

    return template_variables
def render_categorical(summary):
    n_obs_cat = config["vars"]["cat"]["n_obs"].get(int)

    template_variables = render_common(summary)

    # TODO: merge with boolean
    mini_freq_table_rows = freq_table(
        freqtable=summary["value_counts"],
        n=summary["count"],
        max_number_to_print=n_obs_cat,
    )

    # Top
    # Element composition
    info = Overview(
        summary["varid"], summary["varname"], "Categorical", summary["warnings"]
    )

    table = Table(
        [
            {
                "name": "Distinct count",
                "value": summary["n_unique"],
                "fmt": "fmt",
                "class": "alert" if "n_unique" in summary["warn_fields"] else "",
            },
            {
                "name": "Unique (%)",
                "value": summary["p_unique"],
                "fmt": "fmt_percent",
                "class": "alert" if "p_unique" in summary["warn_fields"] else "",
            },
            {
                "name": "Missing",
                "value": summary["n_missing"],
                "fmt": "fmt",
                "class": "alert" if "n_missing" in summary["warn_fields"] else "",
            },
            {
                "name": "Missing (%)",
                "value": summary["p_missing"],
                "fmt": "fmt_percent",
                "class": "alert" if "p_missing" in summary["warn_fields"] else "",
            },
            {
                "name": "Memory size",
                "value": summary["memory_size"],
                "fmt": "fmt_bytesize",
            },
        ]
    )

    fqm = FrequencyTableSmall(mini_freq_table_rows)

    # TODO: settings 3,3,6
    template_variables["top"] = Sequence([info, table, fqm], sequence_type="grid")

    # Bottom
    items = []
    frequency_table = FrequencyTable(
        # 'frequency_table',
        template_variables["freq_table_rows"],
        name="Common Values",
        anchor_id="{varid}common_values".format(varid=summary["varid"]),
    )

    items.append(frequency_table)

    check_compositions = config["vars"]["cat"]["check_composition"].get(bool)
    if check_compositions:
        composition = Table(
            [
                {
                    "name": "Contains chars",
                    "value": summary["composition"]["chars"],
                    "fmt": "fmt",
                },
                {
                    "name": "Contains digits",
                    "value": summary["composition"]["digits"],
                    "fmt": "fmt",
                },
                {
                    "name": "Contains whitespace",
                    "value": summary["composition"]["spaces"],
                    "fmt": "fmt",
                },
                {
                    "name": "Contains non-words",
                    "value": summary["composition"]["non-words"],
                    "fmt": "fmt",
                },
            ],
            name="Composition",
            anchor_id="{varid}composition".format(varid=summary["varid"]),
        )

        length = Table(
            [
                {
                    "name": "Max length",
                    "value": summary["max_length"],
                    "fmt": "fmt_numeric",
                },
                {
                    "name": "Mean length",
                    "value": summary["mean_length"],
                    "fmt": "fmt_numeric",
                },
                {
                    "name": "Min length",
                    "value": summary["min_length"],
                    "fmt": "fmt_numeric",
                },
            ],
            name="Length",
            anchor_id="{varid}lengthstats".format(varid=summary["varid"]),
        )

        tbl = Sequence(
            [composition, length],
            anchor_id="{varid}tbl".format(varid=summary["varid"]),
            name="Composition",
            sequence_type="grid",
        )

        items.append(tbl)

        histogram_bins = 10

        length = Image(
            histogram(summary["length"], summary, histogram_bins),
            alt="Scatter",
            name="Length",
            anchor_id="{varid}length".format(varid=summary["varid"]),
        )
        items.append(length)

    template_variables["bottom"] = Sequence(
        items,
        sequence_type="tabs",
        anchor_id="{varid}bottom".format(varid=summary["varid"]),
    )

    return template_variables
Beispiel #20
0
def render_categorical(summary):
    n_obs_cat = config["vars"]["cat"]["n_obs"].get(int)
    image_format = config["plot"]["image_format"].get(str)

    template_variables = render_common(summary)

    # TODO: merge with boolean
    mini_freq_table_rows = freq_table(
        freqtable=summary["value_counts"],
        n=summary["count"],
        max_number_to_print=n_obs_cat,
    )

    # Top
    # Element composition
    info = Overview(summary["varid"], summary["varname"], "Categorical",
                    summary["warnings"])

    table = Table([
        {
            "name": "Distinct count",
            "value": summary["n_unique"],
            "fmt": "fmt",
            "class": "alert" if "n_unique" in summary["warn_fields"] else "",
        },
        {
            "name": "Unique (%)",
            "value": summary["p_unique"],
            "fmt": "fmt_percent",
            "class": "alert" if "p_unique" in summary["warn_fields"] else "",
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt",
            "class": "alert" if "n_missing" in summary["warn_fields"] else "",
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
            "class": "alert" if "p_missing" in summary["warn_fields"] else "",
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
        },
    ])

    fqm = FrequencyTableSmall(mini_freq_table_rows)

    # TODO: settings 3,3,6
    template_variables["top"] = Sequence([info, table, fqm],
                                         sequence_type="grid")

    # Bottom
    items = []
    frequency_table = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common Values",
        anchor_id="{varid}common_values".format(varid=summary["varid"]),
    )

    items.append(frequency_table)

    check_compositions = config["vars"]["cat"]["check_composition"].get(bool)
    if check_compositions:
        length_table = Table(
            [
                {
                    "name": "Max length",
                    "value": summary["max_length"],
                    "fmt": "fmt_numeric",
                },
                {
                    "name": "Mean length",
                    "value": summary["mean_length"],
                    "fmt": "fmt_numeric",
                },
                {
                    "name": "Min length",
                    "value": summary["min_length"],
                    "fmt": "fmt_numeric",
                },
            ],
            name="Length",
            anchor_id="{varid}lengthstats".format(varid=summary["varid"]),
        )

        histogram_bins = 10

        length = Image(
            histogram(summary["length"], summary, histogram_bins),
            image_format=image_format,
            alt="Scatter",
            name="Length",
            anchor_id="{varid}length".format(varid=summary["varid"]),
        )

        tbl = Sequence(
            [length, length_table],
            anchor_id="{varid}tbl".format(varid=summary["varid"]),
            name="Length",
            sequence_type="grid",
        )

        items.append(tbl)

        n_freq_table_max = config["n_freq_table_max"].get(int)

        citems = []
        vc = pd.Series(summary["category_alias_values"]).value_counts()
        citems.append(
            FrequencyTable(
                freq_table(freqtable=vc,
                           n=vc.sum(),
                           max_number_to_print=n_freq_table_max),
                name="Categories",
                anchor_id="{varid}category_long_values".format(
                    varid=summary["varid"]),
            ))

        vc = pd.Series(summary["script_values"]).value_counts()
        citems.append(
            FrequencyTable(
                freq_table(freqtable=vc,
                           n=vc.sum(),
                           max_number_to_print=n_freq_table_max),
                name="Scripts",
                anchor_id="{varid}script_values".format(
                    varid=summary["varid"]),
            ))

        vc = pd.Series(summary["block_alias_values"]).value_counts()
        citems.append(
            FrequencyTable(
                freq_table(freqtable=vc,
                           n=vc.sum(),
                           max_number_to_print=n_freq_table_max),
                name="Blocks",
                anchor_id="{varid}block_alias_values".format(
                    varid=summary["varid"]),
            ))

        characters = Sequence(
            citems,
            name="Characters",
            sequence_type="tabs",
            anchor_id="{varid}characters".format(varid=summary["varid"]),
        )

        items.append(characters)

    template_variables["bottom"] = Sequence(
        items,
        sequence_type="tabs",
        anchor_id="{varid}bottom".format(varid=summary["varid"]),
    )

    return template_variables
Beispiel #21
0
def render_categorical(summary):
    varid = summary["varid"]
    n_obs_cat = config["vars"]["cat"]["n_obs"].get(int)
    image_format = config["plot"]["image_format"].get(str)
    redact = config["vars"]["cat"]["redact"].get(bool)

    template_variables = render_common(summary)

    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "分类变量",
        summary["warnings"],
        summary["description"],
    )

    table = Table(
        [
            {
                "name": "唯一值计数",
                "value": summary["n_unique"],
                "fmt": "fmt",
                "alert": "n_unique" in summary["warn_fields"],
            },
            {
                "name": "唯一值比例 (%)",
                "value": summary["p_unique"],
                "fmt": "fmt_percent",
                "alert": "p_unique" in summary["warn_fields"],
            },
            {
                "name": "缺失值",
                "value": summary["n_missing"],
                "fmt": "fmt",
                "alert": "n_missing" in summary["warn_fields"],
            },
            {
                "name": "缺失值比例(%)",
                "value": summary["p_missing"],
                "fmt": "fmt_percent",
                "alert": "p_missing" in summary["warn_fields"],
            },
            {
                "name": "内存占用",
                "value": summary["memory_size"],
                "fmt": "fmt_bytesize",
                "alert": False,
            },
        ]
    )

    fqm = FrequencyTableSmall(
        freq_table(
            freqtable=summary["value_counts"],
            n=summary["count"],
            max_number_to_print=n_obs_cat,
        ),
        redact=redact,
    )

    template_variables["top"] = Container([info, table, fqm], sequence_type="grid")

    # Bottom
    items = [
        FrequencyTable(
            template_variables["freq_table_rows"],
            name="常见值",
            anchor_id=f"{varid}common_values",
            redact=redact,
        )
    ]

    max_unique = config["plot"]["pie"]["max_unique"].get(int)
    if max_unique > 0 and summary["n_unique"] <= max_unique:
        items.append(
            Image(
                pie_plot(summary["value_counts"], legend_kws={"loc": "upper right"}),
                image_format=image_format,
                alt="Chart",
                name="图表",
                anchor_id=f"{varid}pie_chart",
            )
        )

    check_length = config["vars"]["cat"]["length"].get(bool)
    if check_length:
        items.append(render_categorical_length(summary, varid, image_format))

    check_unicode = config["vars"]["cat"]["unicode"].get(bool)
    if check_unicode:
        items.append(render_categorical_unicode(summary, varid, redact))

    template_variables["bottom"] = Container(
        items, sequence_type="tabs", anchor_id=f"{varid}bottom"
    )

    return template_variables
def render_date(summary):
    varid = summary["varid"]
    # TODO: render common?
    template_variables = {}

    image_format = config["plot"]["image_format"].get(str)

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Date",
        summary["warnings"],
        summary["description"],
    )

    table1 = Table(
        [
            {
                "name": "唯一值计数",
                "value": summary["n_unique"],
                "fmt": "fmt",
                "alert": False,
            },
            {
                "name": "唯一值比例 (%)",
                "value": summary["p_unique"],
                "fmt": "fmt_percent",
                "alert": False,
            },
            {
                "name": "缺失值",
                "value": summary["n_missing"],
                "fmt": "fmt",
                "alert": False,
            },
            {
                "name": "缺失值比例(%)",
                "value": summary["p_missing"],
                "fmt": "fmt_percent",
                "alert": False,
            },
            {
                "name": "内存占用",
                "value": summary["memory_size"],
                "fmt": "fmt_bytesize",
                "alert": False,
            },
        ]
    )

    table2 = Table(
        [
            {"name": "最小", "value": summary["min"], "fmt": "fmt", "alert": False},
            {"name": "最大", "value": summary["max"], "fmt": "fmt", "alert": False},
        ]
    )

    mini_histo = Image(
        mini_histogram(*summary["histogram"], date=True),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container(
        [info, table1, table2, mini_histo], sequence_type="grid"
    )

    # Bottom
    bottom = Container(
        [
            Image(
                histogram(*summary["histogram"], date=True),
                image_format=image_format,
                alt="Histogram",
                caption=f"<strong>Histogram with fixed size bins</strong> (bins={len(summary['histogram'][1]) - 1})",
                name="Histogram",
                anchor_id=f"{varid}histogram",
            )
        ],
        sequence_type="tabs",
        anchor_id=summary["varid"],
    )

    template_variables["bottom"] = bottom

    return template_variables
Beispiel #23
0
def render_real(summary):
    varid = summary["varid"]
    template_variables = render_common(summary)
    image_format = config["plot"]["image_format"].get(str)

    if summary["min"] >= 0:
        name = "Real number (&Ropf;<sub>&ge;0</sub>)"
    else:
        name = "Real number (&Ropf;)"

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        name,
        summary["warnings"],
        summary["description"],
    )

    table1 = Table(
        [
            {
                "name": "唯一值计数",
                "value": summary["n_unique"],
                "fmt": "fmt",
                "alert": "n_unique" in summary["warn_fields"],
            },
            {
                "name": "唯一值比例 (%)",
                "value": summary["p_unique"],
                "fmt": "fmt_percent",
                "alert": "p_unique" in summary["warn_fields"],
            },
            {
                "name": "缺失值",
                "value": summary["n_missing"],
                "fmt": "fmt",
                "alert": "n_missing" in summary["warn_fields"],
            },
            {
                "name": "缺失值比例(%)",
                "value": summary["p_missing"],
                "fmt": "fmt_percent",
                "alert": "p_missing" in summary["warn_fields"],
            },
            {
                "name": "无穷值",
                "value": summary["n_infinite"],
                "fmt": "fmt",
                "alert": "n_infinite" in summary["warn_fields"],
            },
            {
                "name": "无穷值比例 (%)",
                "value": summary["p_infinite"],
                "fmt": "fmt_percent",
                "alert": "p_infinite" in summary["warn_fields"],
            },
        ]
    )

    table2 = Table(
        [
            {
                "name": "均数",
                "value": summary["mean"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "最小值",
                "value": summary["min"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "最大值",
                "value": summary["max"],
                "fmt": "fmt_numeric",
                "alert": False,
            },
            {
                "name": "零值",
                "value": summary["n_zeros"],
                "fmt": "fmt",
                "alert": "n_zeros" in summary["warn_fields"],
            },
            {
                "name": "零值比例 (%)",
                "value": summary["p_zeros"],
                "fmt": "fmt_percent",
                "alert": "p_zeros" in summary["warn_fields"],
            },
            {
                "name": "内存占用",
                "value": summary["memory_size"],
                "fmt": "fmt_bytesize",
                "alert": False,
            },
        ]
    )

    mini_histo = Image(
        mini_histogram(*summary["histogram"]),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container(
        [info, table1, table2, mini_histo], sequence_type="grid"
    )

    quantile_statistics = Table(
        [
            {"name": "最小值", "value": summary["min"], "fmt": "fmt_numeric"},
            {"name": "5百分位", "value": summary["5%"], "fmt": "fmt_numeric"},
            {"name": "25百分位", "value": summary["25%"], "fmt": "fmt_numeric"},
            {"name": "中位", "value": summary["50%"], "fmt": "fmt_numeric"},
            {"name": "75百分位", "value": summary["75%"], "fmt": "fmt_numeric"},
            {"name": "95-百分位", "value": summary["95%"], "fmt": "fmt_numeric"},
            {"name": "最大值", "value": summary["max"], "fmt": "fmt_numeric"},
            {"name": "极差", "value": summary["range"], "fmt": "fmt_numeric"},
            {
                "name": "四分位距 (IQR)",
                "value": summary["iqr"],
                "fmt": "fmt_numeric",
            },
        ],
        name="定性统计",
    )

    if summary["monotonic_increase_strict"]:
        monotocity = "严格递增"
    elif summary["monotonic_decrease_strict"]:
        monotocity = "严格递减"
    elif summary["monotonic_increase"]:
        monotocity = "递增"
    elif summary["monotonic_decrease"]:
        monotocity = "递减"
    else:
        monotocity = "非单调"

    descriptive_statistics = Table(
        [
            {
                "name": "标准差",
                "value": summary["std"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "变异系数 (CV)",
                "value": summary["cv"],
                "fmt": "fmt_numeric",
            },
            {"name": "峰度", "value": summary["kurtosis"], "fmt": "fmt_numeric"},
            {"name": "均数", "value": summary["mean"], "fmt": "fmt_numeric"},
            {
                "name": "中位绝对偏差 (MAD)",
                "value": summary["mad"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "偏度",
                "value": summary["skewness"],
                "fmt": "fmt_numeric",
                "class": "alert" if "skewness" in summary["warn_fields"] else "",
            },
            {"name": "总和", "value": summary["sum"], "fmt": "fmt_numeric"},
            {"name": "方差", "value": summary["variance"], "fmt": "fmt_numeric"},
            {"name": "单调性", "value": monotocity, "fmt": "fmt"},
        ],
        name="描述性统计",
    )

    statistics = Container(
        [quantile_statistics, descriptive_statistics],
        anchor_id=f"{varid}statistics",
        name="统计",
        sequence_type="grid",
    )

    hist = Image(
        histogram(*summary["histogram"]),
        image_format=image_format,
        alt="Histogram",
        caption=f"<strong>固定大小的直方图</strong> (bins={len(summary['histogram'][1]) - 1})",
        name="直方图",
        anchor_id=f"{varid}histogram",
    )

    fq = FrequencyTable(
        template_variables["freq_table_rows"],
        name="常见值",
        anchor_id=f"{varid}common_values",
        redact=False,
    )

    evs = Container(
        [
            FrequencyTable(
                template_variables["firstn_expanded"],
                name="最小10个",
                anchor_id=f"{varid}firstn",
                redact=False,
            ),
            FrequencyTable(
                template_variables["lastn_expanded"],
                name="最大10个",
                anchor_id=f"{varid}lastn",
                redact=False,
            ),
        ],
        sequence_type="tabs",
        name="极值",
        anchor_id=f"{varid}extreme_values",
    )

    template_variables["bottom"] = Container(
        [statistics, hist, fq, evs], sequence_type="tabs", anchor_id=f"{varid}bottom",
    )

    return template_variables
def render_date(config: Settings, summary: Dict[str, Any]) -> Dict[str, Any]:
    varid = summary["varid"]
    template_variables = {}

    image_format = config.plot.image_format

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Date",
        summary["warnings"],
        summary["description"],
    )

    table1 = Table(
        [
            {
                "name": "Distinct",
                "value": fmt(summary["n_distinct"]),
                "alert": False,
            },
            {
                "name": "Distinct (%)",
                "value": fmt_percent(summary["p_distinct"]),
                "alert": False,
            },
            {
                "name": "Missing",
                "value": fmt(summary["n_missing"]),
                "alert": False,
            },
            {
                "name": "Missing (%)",
                "value": fmt_percent(summary["p_missing"]),
                "alert": False,
            },
            {
                "name": "Memory size",
                "value": fmt_bytesize(summary["memory_size"]),
                "alert": False,
            },
        ]
    )

    table2 = Table(
        [
            {"name": "Minimum", "value": fmt(summary["min"]), "alert": False},
            {"name": "Maximum", "value": fmt(summary["max"]), "alert": False},
        ]
    )

    mini_histo = Image(
        mini_histogram(
            config, summary["histogram"][0], summary["histogram"][1], date=True
        ),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container(
        [info, table1, table2, mini_histo], sequence_type="grid"
    )

    # Bottom
    bottom = Container(
        [
            Image(
                histogram(
                    config, summary["histogram"][0], summary["histogram"][1], date=True
                ),
                image_format=image_format,
                alt="Histogram",
                caption=f"<strong>Histogram with fixed size bins</strong> (bins={len(summary['histogram'][1]) - 1})",
                name="Histogram",
                anchor_id=f"{varid}histogram",
            )
        ],
        sequence_type="tabs",
        anchor_id=summary["varid"],
    )

    template_variables["bottom"] = bottom

    return template_variables
def render_real(summary):
    varid = summary["varid"]
    template_variables = render_common(summary)
    image_format = config["plot"]["image_format"].get(str)

    if summary["min"] >= 0:
        name = "Real number (&Ropf;<sub>&ge;0</sub>)"
    else:
        name = "Real number (&Ropf;)"

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        name,
        summary["warnings"],
        summary["description"],
    )

    table1 = Table([
        {
            "name": "Distinct count",
            "value": summary["n_unique"],
            "fmt": "fmt",
            "alert": "n_unique" in summary["warn_fields"],
        },
        {
            "name": "Unique (%)",
            "value": summary["p_unique"],
            "fmt": "fmt_percent",
            "alert": "p_unique" in summary["warn_fields"],
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt",
            "alert": "n_missing" in summary["warn_fields"],
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
            "alert": "p_missing" in summary["warn_fields"],
        },
        {
            "name": "Infinite",
            "value": summary["n_infinite"],
            "fmt": "fmt",
            "alert": "n_infinite" in summary["warn_fields"],
        },
        {
            "name": "Infinite (%)",
            "value": summary["p_infinite"],
            "fmt": "fmt_percent",
            "alert": "p_infinite" in summary["warn_fields"],
        },
    ])

    table2 = Table([
        {
            "name": "Mean",
            "value": summary["mean"],
            "fmt": "fmt",
            "alert": False
        },
        {
            "name": "Minimum",
            "value": summary["min"],
            "fmt": "fmt",
            "alert": False
        },
        {
            "name": "Maximum",
            "value": summary["max"],
            "fmt": "fmt",
            "alert": False
        },
        {
            "name": "Zeros",
            "value": summary["n_zeros"],
            "fmt": "fmt",
            "alert": "n_zeros" in summary["warn_fields"],
        },
        {
            "name": "Zeros (%)",
            "value": summary["p_zeros"],
            "fmt": "fmt_percent",
            "alert": "p_zeros" in summary["warn_fields"],
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
            "alert": False,
        },
    ])

    histogram_bins = 10

    # TODO: replace with SmallImage...
    mini_histo = Image(
        mini_histogram(summary["histogram_data"], summary, histogram_bins),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container([info, table1, table2, mini_histo],
                                          sequence_type="grid")

    quantile_statistics = Table(
        [
            {
                "name": "Minimum",
                "value": summary["min"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "5-th percentile",
                "value": summary["5%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Q1",
                "value": summary["25%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "median",
                "value": summary["50%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Q3",
                "value": summary["75%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "95-th percentile",
                "value": summary["95%"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Maximum",
                "value": summary["max"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Range",
                "value": summary["range"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Interquartile range (IQR)",
                "value": summary["iqr"],
                "fmt": "fmt_numeric",
            },
        ],
        name="Quantile statistics",
    )

    descriptive_statistics = Table(
        [
            {
                "name": "Standard deviation",
                "value": summary["std"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Coefficient of variation (CV)",
                "value": summary["cv"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Kurtosis",
                "value": summary["kurtosis"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Mean",
                "value": summary["mean"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Median Absolute Deviation (MAD)",
                "value": summary["mad"],
                "fmt": "fmt_numeric",
            },
            {
                "name": "Skewness",
                "value": summary["skewness"],
                "fmt": "fmt_numeric",
                "class":
                "alert" if "skewness" in summary["warn_fields"] else "",
            },
            {
                "name": "Sum",
                "value": summary["sum"],
                "fmt": "fmt_numeric"
            },
            {
                "name": "Variance",
                "value": summary["variance"],
                "fmt": "fmt_numeric"
            },
        ],
        name="Descriptive statistics",
    )

    statistics = Container(
        [quantile_statistics, descriptive_statistics],
        anchor_id=f"{varid}statistics",
        name="Statistics",
        sequence_type="grid",
    )

    seqs = [
        Image(
            histogram(summary["histogram_data"], summary, histogram_bins),
            image_format=image_format,
            alt="Histogram",
            caption=
            f"<strong>Histogram with fixed size bins</strong> (bins={histogram_bins})",
            name="Histogram",
            anchor_id=f"{varid}histogram",
        )
    ]

    fq = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common values",
        anchor_id=f"{varid}common_values",
    )

    evs = Container(
        [
            FrequencyTable(
                template_variables["firstn_expanded"],
                name="Minimum 5 values",
                anchor_id=f"{varid}firstn",
            ),
            FrequencyTable(
                template_variables["lastn_expanded"],
                name="Maximum 5 values",
                anchor_id=f"{varid}lastn",
            ),
        ],
        sequence_type="tabs",
        name="Extreme values",
        anchor_id=f"{varid}extreme_values",
    )

    if "histogram_bins_bayesian_blocks" in summary:
        histo_dyn = Image(
            histogram(
                summary["histogram_data"],
                summary,
                summary["histogram_bins_bayesian_blocks"],
            ),
            image_format=image_format,
            alt="Histogram",
            caption=
            '<strong>Histogram with variable size bins</strong> (bins={}, <a href="https://ui.adsabs.harvard.edu/abs/2013ApJ...764..167S/abstract" target="_blank">"bayesian blocks"</a> binning strategy used)'
            .format(
                fmt_array(summary["histogram_bins_bayesian_blocks"],
                          threshold=5)),
            name="Dynamic Histogram",
            anchor_id=f"{varid}dynamic_histogram",
        )

        seqs.append(histo_dyn)

    template_variables["bottom"] = Container(
        [
            statistics,
            Container(
                seqs,
                sequence_type="tabs",
                name="Histogram(s)",
                anchor_id=f"{varid}histograms",
            ),
            fq,
            evs,
        ],
        sequence_type="tabs",
        anchor_id=f"{varid}bottom",
    )

    return template_variables
def render_count(config: Settings, summary: dict) -> dict:
    template_variables = render_common(config, summary)
    image_format = config.plot.image_format

    # Top
    info = VariableInfo(
        summary["varid"],
        summary["varname"],
        "Real number (&Ropf; / &Ropf;<sub>&ge;0</sub>)",
        summary["warnings"],
        summary["description"],
    )

    table1 = Table([
        {
            "name": "Distinct",
            "value": fmt(summary["n_distinct"]),
            "alert": False,
        },
        {
            "name": "Distinct (%)",
            "value": fmt_percent(summary["p_distinct"]),
            "alert": False,
        },
        {
            "name": "Missing",
            "value": fmt(summary["n_missing"]),
            "alert": False,
        },
        {
            "name": "Missing (%)",
            "value": fmt_percent(summary["p_missing"]),
            "alert": False,
        },
    ])

    table2 = Table([
        {
            "name":
            "Mean",
            "value":
            fmt_numeric(summary["mean"], precision=config.report.precision),
            "alert":
            False,
        },
        {
            "name": "Minimum",
            "value": fmt_numeric(summary["min"],
                                 precision=config.report.precision),
            "alert": False,
        },
        {
            "name": "Maximum",
            "value": fmt_numeric(summary["max"],
                                 precision=config.report.precision),
            "alert": False,
        },
        {
            "name": "Zeros",
            "value": fmt(summary["n_zeros"]),
            "alert": False,
        },
        {
            "name": "Zeros (%)",
            "value": fmt_percent(summary["p_zeros"]),
            "alert": False,
        },
        {
            "name": "Memory size",
            "value": fmt_bytesize(summary["memory_size"]),
            "alert": False,
        },
    ])

    mini_histo = Image(
        mini_histogram(config, *summary["histogram"]),
        image_format=image_format,
        alt="Mini histogram",
    )

    template_variables["top"] = Container([info, table1, table2, mini_histo],
                                          sequence_type="grid")

    seqs = [
        Image(
            histogram(config, *summary["histogram"]),
            image_format=image_format,
            alt="Histogram",
            caption=
            f"<strong>Histogram with fixed size bins</strong> (bins={len(summary['histogram'][1]) - 1})",
            name="Histogram",
            anchor_id="histogram",
        )
    ]

    fq = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Common values",
        anchor_id="common_values",
        redact=False,
    )

    evs = Container(
        [
            FrequencyTable(
                template_variables["firstn_expanded"],
                name="Minimum 5 values",
                anchor_id="firstn",
                redact=False,
            ),
            FrequencyTable(
                template_variables["lastn_expanded"],
                name="Maximum 5 values",
                anchor_id="lastn",
                redact=False,
            ),
        ],
        sequence_type="tabs",
        name="Extreme values",
        anchor_id="extreme_values",
    )

    template_variables["bottom"] = Container(
        [
            Container(seqs,
                      sequence_type="tabs",
                      name="Histogram(s)",
                      anchor_id="histograms"),
            fq,
            evs,
        ],
        sequence_type="tabs",
        anchor_id=summary["varid"],
    )

    return template_variables
Beispiel #27
0
def render_path(summary):
    varid = summary["varid"]
    n_freq_table_max = config["n_freq_table_max"].get(int)
    image_format = config["plot"]["image_format"].get(str)

    template_variables = render_categorical(summary)

    keys = ["name", "parent", "suffix", "stem"]
    for path_part in keys:
        template_variables[f"freqtable_{path_part}"] = freq_table(
            freqtable=summary[f"{path_part}_counts"],
            n=summary["n"],
            max_number_to_print=n_freq_table_max,
        )

    # Top
    template_variables["top"].content["items"][0].content["var_type"] = "Path"
    # TODO: colspan=2
    # template_variables['top'].content['items'][1].content['rows'].append({'name': 'Common prefix', 'value': summary['common_prefix'], 'fmt': 'fmt'})
    # {  # <td>#}
    #     {  # <div style="white-space: nowrap;overflow: hidden;text-overflow: ellipsis;max-width: 600px;">#}
    #         {  # {{ values['common_prefix'] }}#}
    #             {  # </div>#}
    #                 {  # </td>#}
    #
    # Bottom
    full = FrequencyTable(
        template_variables["freq_table_rows"],
        name="Full",
        anchor_id=f"{varid}full_frequency",
    )

    stem = FrequencyTable(
        template_variables["freqtable_stem"],
        name="Stem",
        anchor_id=f"{varid}stem_frequency",
    )

    name = FrequencyTable(
        template_variables["freqtable_name"],
        name="Name",
        anchor_id=f"{varid}name_frequency",
    )

    suffix = FrequencyTable(
        template_variables["freqtable_suffix"],
        name="Suffix",
        anchor_id=f"{varid}suffix_frequency",
    )

    parent = FrequencyTable(
        template_variables["freqtable_parent"],
        name="Parent",
        anchor_id=f"{varid}parent_frequency",
    )

    template_variables["bottom"].content["items"].append(full)
    template_variables["bottom"].content["items"].append(stem)
    template_variables["bottom"].content["items"].append(name)
    template_variables["bottom"].content["items"].append(suffix)
    template_variables["bottom"].content["items"].append(parent)

    if "file_sizes" in summary:
        file_size_histogram = Image(
            histogram(summary["file_sizes"], summary,
                      summary["histogram_bins"]),
            image_format=image_format,
            alt="File size",
            caption=
            f"<strong>Histogram with fixed size bins of file sizes (in bytes)</strong> (bins={summary['histogram_bins']})",
            name="File size",
            anchor_id=f"{varid}file_size_histogram",
        )

        # TODO: in SequeencyItem
        template_variables["bottom"].content["items"].append(
            file_size_histogram)

    return template_variables
Beispiel #28
0
def render_boolean(config: Settings, summary: dict) -> dict:
    varid = summary["varid"]
    n_obs_bool = config.vars.bool.n_obs
    image_format = config.plot.image_format

    # Prepare variables
    template_variables = render_common(config, summary)

    # Element composition
    info = VariableInfo(
        anchor_id=summary["varid"],
        alerts=summary["alerts"],
        var_type="Boolean",
        var_name=summary["varname"],
        description=summary["description"],
    )

    table = Table(
        [
            {
                "name": "Distinct",
                "value": fmt(summary["n_distinct"]),
                "alert": "n_distinct" in summary["alert_fields"],
            },
            {
                "name": "Distinct (%)",
                "value": fmt_percent(summary["p_distinct"]),
                "alert": "p_distinct" in summary["alert_fields"],
            },
            {
                "name": "Missing",
                "value": fmt(summary["n_missing"]),
                "alert": "n_missing" in summary["alert_fields"],
            },
            {
                "name": "Missing (%)",
                "value": fmt_percent(summary["p_missing"]),
                "alert": "p_missing" in summary["alert_fields"],
            },
            {
                "name": "Memory size",
                "value": fmt_bytesize(summary["memory_size"]),
                "alert": False,
            },
        ]
    )

    fqm = FrequencyTableSmall(
        freq_table(
            freqtable=summary["value_counts_without_nan"],
            n=summary["n"],
            max_number_to_print=n_obs_bool,
        ),
        redact=False,
    )

    template_variables["top"] = Container([info, table, fqm], sequence_type="grid")

    items: List[Renderable] = [
        FrequencyTable(
            template_variables["freq_table_rows"],
            name="Common Values",
            anchor_id=f"{varid}frequency_table",
            redact=False,
        )
    ]

    max_unique = config.plot.pie.max_unique
    if max_unique > 0:
        items.append(
            Image(
                pie_plot(
                    config,
                    summary["value_counts_without_nan"],
                    legend_kws={"loc": "upper right"},
                ),
                image_format=image_format,
                alt="Chart",
                name="Chart",
                anchor_id=f"{varid}pie_chart",
            )
        )

    template_variables["bottom"] = Container(
        items, sequence_type="tabs", anchor_id=f"{varid}bottom"
    )

    return template_variables
def render_boolean(summary):
    varid = summary["varid"]
    n_obs_bool = config["vars"]["bool"]["n_obs"].get(int)
    image_format = config["plot"]["image_format"].get(str)

    # Prepare variables
    template_variables = render_common(summary)

    # Element composition
    info = VariableInfo(
        anchor_id=summary["varid"],
        warnings=summary["warnings"],
        var_type="Boolean",
        var_name=summary["varname"],
        description=summary["description"],
    )

    table = Table([
        {
            "name": "Distinct",
            "value": summary["n_distinct"],
            "fmt": "fmt",
            "alert": "n_distinct" in summary["warn_fields"],
        },
        {
            "name": "Distinct (%)",
            "value": summary["p_distinct"],
            "fmt": "fmt_percent",
            "alert": "p_distinct" in summary["warn_fields"],
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt",
            "alert": "n_missing" in summary["warn_fields"],
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
            "alert": "p_missing" in summary["warn_fields"],
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
            "alert": False,
        },
    ])

    fqm = FrequencyTableSmall(
        freq_table(
            freqtable=summary["value_counts"],
            n=summary["n"],
            max_number_to_print=n_obs_bool,
        ),
        redact=False,
    )

    template_variables["top"] = Container([info, table, fqm],
                                          sequence_type="grid")

    items = [
        FrequencyTable(
            template_variables["freq_table_rows"],
            name="Common Values",
            anchor_id=f"{varid}frequency_table",
            redact=False,
        )
    ]

    max_unique = config["plot"]["pie"]["max_unique"].get(int)
    if max_unique > 0:
        items.append(
            Image(
                pie_plot(summary["value_counts"],
                         legend_kws={"loc": "upper right"}),
                image_format=image_format,
                alt="Chart",
                name="Chart",
                anchor_id=f"{varid}pie_chart",
            ))

    template_variables["bottom"] = Container(items,
                                             sequence_type="tabs",
                                             anchor_id=f"{varid}bottom")

    return template_variables
Beispiel #30
0
def render_date(summary):
    # TODO: render common?
    template_variables = {}
    # Top
    info = Overview(summary["varid"], summary["varname"], "Date", [])

    table1 = Table([
        {
            "name": "Distinct count",
            "value": summary["n_unique"],
            "fmt": "fmt"
        },
        {
            "name": "Unique (%)",
            "value": summary["p_unique"],
            "fmt": "fmt_percent"
        },
        {
            "name": "Missing",
            "value": summary["n_missing"],
            "fmt": "fmt"
        },
        {
            "name": "Missing (%)",
            "value": summary["p_missing"],
            "fmt": "fmt_percent",
        },
        {
            "name": "Memory size",
            "value": summary["memory_size"],
            "fmt": "fmt_bytesize",
        },
    ])

    table2 = Table([
        {
            "name": "Minimum",
            "value": summary["min"],
            "fmt": "fmt"
        },
        {
            "name": "Maximum",
            "value": summary["max"],
            "fmt": "fmt"
        },
        # {'name': '', 'value': '', 'fmt': 'fmt'},
        # {'name': '', 'value': '', 'fmt': 'fmt'},
        # {'name': '', 'value': '', 'fmt': 'fmt'},
        # {'name': '', 'value': '', 'fmt': 'fmt'},
    ])

    mini_histo = Image(
        mini_histogram(summary["histogram_data"], summary,
                       summary["histogram_bins"]),
        "Mini histogram",
    )

    template_variables["top"] = Sequence([info, table1, table2, mini_histo],
                                         sequence_type="grid")

    # Bottom
    bottom = Sequence(
        [
            Image(
                histogram(summary["histogram_data"], summary,
                          summary["histogram_bins"]),
                alt="Histogram",
                caption="Histogram",
                name="Histogram",
                anchor_id="{varid}histogram".format(varid=summary["varid"]),
            )
        ],
        sequence_type="tabs",
        anchor_id=summary["varid"],
    )

    template_variables["bottom"] = bottom

    return template_variables