Beispiel #1
0
    if np.mod(i+1, 10) == 0:
        print('Processing data of subject %d of %d' % (i+1,
                                                       len(behav['subject_nickname'].unique())))

    # Get lab and timezone
    lab = behav.loc[behav['subject_nickname'] == nickname, 'institution_code'].unique()[0]
    time_zone = behav.loc[behav['subject_nickname'] == nickname, 'time_zone'].unique()[0]
    if (time_zone == 'Europe/Lisbon') or (time_zone == 'Europe/London'):
        time_zone_number = 0
    elif time_zone == 'America/New_York':
        time_zone_number = -5
    elif time_zone == 'America/Los_Angeles':
        time_zone_number = -7

     # Fit psychometric curve
    left_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname)
                                   & (behav['probabilityLeft'] == 80)])
    right_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname)
                                    & (behav['probabilityLeft'] == 20)])
    neutral_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname)
                                    & (behav['probabilityLeft'] == 50)])
    perf_easy = (behav.loc[behav['subject_nickname'] == nickname, 'correct_easy'].mean()) * 100

    fits = pd.DataFrame(data={'perf_easy': perf_easy,
                              'threshold_l': left_fit['threshold'],
                              'threshold_r': right_fit['threshold'],
                              'threshold_n': neutral_fit['threshold'],
                              'bias_l': left_fit['bias'],
                              'bias_r': right_fit['bias'],
                              'bias_n': neutral_fit['bias'],
                              'time_zone': time_zone_number,
                              'nickname': nickname, 'lab_number': lab})
Beispiel #2
0
for i, nickname in enumerate(behav['subject_nickname'].unique()):
    if np.mod(i + 1, 10) == 0:
        print('Processing data of subject %d of %d' %
              (i + 1, len(behav['subject_nickname'].unique())))

    # Get the trials of the sessions around criterion for this subject (first
    # 90% + next session)
    trials = behav[behav['subject_nickname'] == nickname].reset_index()
    # Exclude sessions with less than 4 contrasts
    trials['contrast_set'] = trials.session_start_time.map(
        trials.groupby(['session_start_time'])['signed_contrast'].unique())
    trials = trials.loc[trials['contrast_set'].str.len() > 4]
    if len(trials['session_start_time'].unique()) < 3:
        continue
    # Fit a psychometric function to these trials and get fit results
    fit_result = fit_psychfunc(trials)

    # Get RT, performance and number of trials
    reaction_time = trials['rt'].median() * 1000
    perf_easy = trials['correct_easy'].mean() * 100
    ntrials_perday = trials.groupby('session_uuid').count()['trial_id'].mean()

    # average trials/minute to normalise by session length
    trials['session_length'] = (
        trials.session_end_time -
        trials.session_start_time).astype('timedelta64[m]')
    total_session_length = trials.groupby(
        'session_uuid')['session_length'].mean().sum()
    total_n_trials = trials['trial_id'].count()

    # Add results to dataframe