Beispiel #1
0
from parameters import Param
import matplotlib.pyplot as plt
from utils import make_gif, make_plot
from time import time
from pathlib import Path
import sys

PATH = sys.argv[1] if len(sys.argv) == 2 else str(Path(__file__).parent.absolute())[:-3]+'imgs/'
NAME = 'huge'

fst = Param(
    CLUSTERS = 12**2,
    CLUST_SIDE_LEN = 7,
    DAYS = 100,

    INFECTION_TIME = 20,
    DEATH_RATE = 0.4,
    INFECT_RATE = 0.3,
    MIGRATIONS_PER_DAY = 100,
    FEAR_RATE = 0.4,
    HEALTHCARE_CAPACITY = 2500
)


start = time()
cumulative, active, healed, dead, migrations, real_mig = run_simulation(fst, PATH)

print('time elapsed:', time() - start, flush=True) 
make_gif(PATH, NAME)

# plt.plot(range(len(migrations)), migrations, label='migrations', color='blue')
plt.plot(range(len(real_mig)), real_mig, label='migrations', color='blue', ls=':')
Beispiel #2
0
from parameters import Param
import rgdf
import matplotlib.pyplot as plt
import time
import glob
import schwimmbad
import numpy as np
from netCDF4 import Dataset
import iotools
import datetime

plt.ion()

# load the paragridded parameters
param = Param()

param.dirgigabin = "/ccc/store/cont003/gch0401/gch0401/GIGATL1_1h_tides/BIN_1h_JG"

param.dirgrid = "/ccc/scratch/cont003/ra4735/gulaj/GIGATL1/INIT_N100_100_100/GRD3"
param.dirgrid = "/ccc/scratch/cont003/gen12051/groullet/giga/GRD"

# setup readers
rgdf.setup_predefine_readers(param)

# list of tiles in region 7
reg7 = [t for t, r in param.subdmap.items() if r == 7]


def get_alldates(datadir, subd):
    """ return the dates converted into dat file"""
    files = glob.glob(f"{datadir}/{subd:02}/*.dat")
Beispiel #3
0
"""
 Tools to manage the RGDF database
"""

from parameters import Param
import rgdf
import glob

param = Param()


def get_whatisdone(param, subd):
    """ return the list of dates that are completed in region subd
    """
    pattern = f"{param.dirgigabin}/{subd:02}/giga_*_{subd:02}.dat"
    files = glob.glob(pattern)
    dates = [f.split("/")[-1].split("_")[1] for f in files]
    return dates
    
def scan_all(param):
    dates = {}
    for subd in range(1, 14):
        dates[subd] = get_whatisdone(param, subd)
    return dates
Beispiel #4
0
import os
import sys
import tensorflow as tf
from parameters import Param

from src.model.model import Net

# Obtain parameters
args = Param()

os.environ["CUDA_VISIBLE_DEVICES"] = "1"


def main(_):

    Net_model = Net

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
    config = tf.ConfigProto(gpu_options=gpu_options)
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        model = Net_model(sess, args)


if __name__ == '__main__':
    tf.app.run()
Beispiel #5
0
from parameters import Param
import giga_subdomains as gs
import datetime as dt
import dates
import ncconvert
import migration

param = Param()

# Region 1 (Gulf Stream separation): 78W-68W, 30N-40N;
dom = ((-78, 30), (-68, 40))

# Region 2 (Gulf Stream extension): 54W-44W, 30N-40N
dom = ((-54, 30), (-44, 40))

domain = gs.LLTR2domain(*dom)
tiles = gs.find_tiles_inside(param, domain)
subds = [param.subdmap[t] for t in tiles]
print(set(subds))

# Pour les périodes:
#
# Aug., Sep. and Oct. 2008
# Feb., Mar. and Apr. 2009

d0 = dt.datetime(2008, 8, 1, 0)
d1 = dt.datetime(2008, 11, 1, 0)

d0 = dt.datetime(2009, 2, 1, 0)
d1 = dt.datetime(2009, 5, 1, 0)
hisdates = dates.daterange(d0, d1, dates.day)