Beispiel #1
0
    def __init__(self):
        self.seq_set = -1
        self.seq = ()

        self.load = 0
        self.save = 1
        self.start = 0

        self.load_prefix = MultiPath()
        self.save_prefix = MultiPath()
        self.results_dir_root = MultiPath()
        self.results_dir = MultiPath()
    def __init__(self):
        self.cfg = ()
        self.codec = 'H264'
        self.del_patch_seq = 0
        self.disp_resize_factor = 1.0
        self.end_id = -1
        self.fname_templ = 'img'
        self.fps = 30
        self.height = 720

        self.images_ext = 'tif'
        self.labels_ext = 'png'

        self.labels_path = ''
        self.method = 0
        self.n_classes = 3
        self.n_frames = 0
        self.normalize_patches = 0
        self.out_ext = 'png'
        self.patch_ext = 'png'
        self.patch_height = 32

        self.patch_width = 0
        self.resize_factor = 1.0
        self.seq_name = 'Training'
        self.show_img = 0

        self.stacked = 0
        self.start_id = 0

        self.src_path = ''
        self.patch_seq_path = ''
        self.stitched_seq_path = ''

        self.db_root_dir = '/data'
        self.patch_seq_name = ''
        self.patch_seq_type = 'images'
        self.labels_dir = 'Labels'
        self.images_dir = 'Images'

        self.class_info_path = 'data/classes_ice.txt'

        self.width = 1280

        self.model_info = MultiPath()
        self.train_info = MultiPath()
        self.train_split = MultiPath()

        self.dataset = ''
Beispiel #3
0
        def __init__(self):
            RunParams.__init__(self)

            self.seq_set_info = MultiPath()
            self.eval_dir = MultiPath()

            self.mode = 1
            self.evaluate = 1
            self.eval_dist_type = 0
            self.eval_file = 'mot_metrics.log'

            self.subseq_postfix = 1

            self._load_prefix = None
            self._save_prefix = None
Beispiel #4
0
        def __init__(self):
            RunParams.__init__(self)

            self.load_dir = ''
            self.load_id = -1

            self.seq_set = 4
            self.seq = (5, )

            self.active_pt = 1
            self.active_pt_dir = MultiPath()

            self.load_prefix = MultiPath('trained')
            self.save_prefix = MultiPath('trained')
            self.results_dir_root = MultiPath()
            self.results_dir = MultiPath('log')
    def __init__(self):
        self.cfg_root = 'cfg'
        self.cfg_ext = 'cfg'
        self.cfg = ()

        self.dataset = ''
        self.seq_name = MultiPath()
        self.image_dir = 'Images'
        self.labels_dir = 'Labels'
        self.seq_name = MultiPath()
        self.n_classes = 3

        self.db_root_dir = ''
        self.src_path = ''
        self.labels_path = ''

        self.img_ext = 'tif'
        self.labels_ext = 'jpg'
        self.out_img_ext = 'jpg'
        self.out_labels_ext = 'png'

        self.py_exe = 'python36'

        self.seq_id = -1
        self.seq_start_id = 0
        self.seq_end_id = -1

        self.start_id = 0
        self.end_id = -1

        self.enable_flip = 0
        self.max_rot = 345
        self.max_stride = 0
        self.min_rot = 15
        self.min_stride = 10
        self.n_frames = 0
        self.n_rot = 3
        self.patch_height = 32
        self.patch_width = 0
        self.show_img = 0
        self.parallel = 1
        self.log_to_file = 0
        self.log_dir = 'log'
    def __init__(self):
        self.cfg = ()
        self.end_id = -1
        self.images_ext = 'png'
        self.labels_ext = 'png'
        self.log_dir = ''
        self.normalize_labels = 1
        self.out_ext = 'jpg'
        self.save_path = ''
        self.save_stitched = 1
        self.seg_ext = 'png'
        self.seg_path = ''
        self.selective_mode = 0
        self.show_img = 0
        self.start_id = 0
        self.stitch = 0
        self.stitch_seg = 1
        self.no_labels = 1
        self.class_info_path = 'data/classes_ice.txt'

        self.multi_sequence_db = 0
        self.seg_on_subset = 0
        self.add_border = 0
        self.blended = 1

        self.log_root_dir = 'log'
        self.db_root_dir = '/data'

        self.images_path = ''
        self.labels_path = ''
        self.labels_dir = 'labels'
        self.images_dir = 'images'

        self.dataset = ''

        self.model_info = MultiPath()
        self.train_split = MultiPath()
        self.vis_split = MultiPath()
        self.train_info = MultiPath()
        self.vis_info = MultiPath()
Beispiel #7
0
        def __init__(self, name):
            self.path = ''
            self.src_dir = MultiPath(name)
            self.fix_frame_ids = 1
            self.sort_by_frame_ids = 0
            self.ignore_ioa_thresh = 0.5
            self.allow_missing = 0

            self.help = {
                'path':
                'path of the text file in MOT format from where the objects data is to be read;'
                'if this is empty, then a default path is constructed from the sequence and dataset names',
                'fix_frame_ids':
                'convert the frame IDs in the annotations and detections from 1-based '
                '(default MOT challenge format) to 0-based that is needed for internal'
                ' processing convenience',
                'sort_by_frame_ids':
                'sort data by frame IDs',
                'ignored_regions':
                '1: read ignored_regions from annotations; '
                '2: discard the regions after reading'
            }
    def __init__(self):
        self.cfg = ()
        self.add_flipped_images = False
        self.add_image_level_feature = False
        self.also_save_raw_predictions = True
        self.also_save_vis_predictions = 0

        self.alsologtostderr = False

        self.aspp_with_batch_norm = True
        self.aspp_with_separable_conv = True
        self.atrous_rates = []
        self.colormap_type = 'pascal'

        self.decoder_output_stride = None
        self.decoder_use_separable_conv = True
        self.dense_prediction_cell_json = ''
        self.depth_multiplier = 1.0
        self.divisible_by = None
        self.eval_interval_secs = 0
        self.eval_scales = [1.0, ]
        self.image_pooling_crop_size = None
        self.image_pooling_stride = [1, 1]
        self.image_pyramid = None
        self.logits_kernel_size = 1

        self.logtostderr = False

        self.master = ''
        self.max_number_of_iterations = 1
        self.max_resize_value = None
        self.merge_method = 'max'
        self.min_resize_value = None
        self.model_variant = 'mobilenet_v2'
        self.multi_grid = None
        self.nas_stem_output_num_conv_filters = 20
        self.only_check_args = False
        self.op_conversion_fallback_to_while_loop = False
        self.output_stride = 16
        self.pdb_post_mortem = False
        self.prediction_with_upsampled_logits = True
        self.profile_file = None
        self.quantize_delay_step = -1
        self.resize_factor = None
        self.run_with_pdb = False
        self.run_with_profiling = False

        self.showprefixforinfo = True
        self.stderrthreshold = 'fatal'

        self.test_random_seed = 301
        self.test_randomize_ordering_seed = None
        self.test_srcdir = ''

        self.use_bounded_activation = False
        self.use_cprofile_for_profiling = True
        self.v = -1
        self.verbosity = -1
        self.vis_batch_size = 1
        self.vis_crop_size = [513, 513]

        self.model_info = MultiPath()
        self.train_info = MultiPath()
        self.train_split = MultiPath()
        self.vis_info = MultiPath()
        self.vis_split = MultiPath()

        self.dataset = ''
        self.vis_type = 'test'
        self.dataset_dir = ''
        self.db_root_dir = '/data'
        self.xml_output_file = ''

        self.log_dir = ''
        self.checkpoint_dir = ''
        self.vis_logdir = ''

        self.class_info_path = 'data/classes_ice.txt'
Beispiel #9
0
    def __init__(self):
        self.logtostderr = False
        self.alsologtostderr = False

        self.stderrthreshold = 'fatal'
        self.showprefixforinfo = True

        self.v = -1
        self.verbosity = -1
        self.run_with_pdb = False
        self.pdb_post_mortem = False
        self.run_with_profiling = False
        self.profile_file = None
        self.use_cprofile_for_profiling = True
        self.only_check_args = False
        self.op_conversion_fallback_to_while_loop = False
        self.test_random_seed = 301
        self.test_randomize_ordering_seed = 0
        self.xml_output_file = ''
        self.num_clones = 1
        self.clone_on_cpu = False
        self.num_replicas = 1
        self.startup_delay_steps = 15
        self.num_ps_tasks = 0
        self.master = ''
        self.task = 0

        self.log_steps = 10
        self.save_interval_secs = 12
        self.save_summaries_secs = 6
        self.save_summaries_images = True
        self.profile_logdir = None
        self.learning_policy = 'poly'
        self.base_learning_rate = 0.0001
        self.learning_rate_decay_factor = 0.1
        self.learning_rate_decay_step = 2000
        self.learning_power = 0.9
        self.train_steps = 5000
        self.momentum = 0.9
        self.weight_decay = 4e-05
        self.train_crop_size = [513, 513]
        self.last_layer_gradient_multiplier = 1.0
        self.upsample_logits = True
        self.drop_path_keep_prob = 1.0
        self.tf_initial_checkpoint = None
        self.initialize_last_layer = True
        self.last_layers_contain_logits_only = False
        self.slow_start_step = 0
        self.slow_start_learning_rate = 0.0001
        self.fine_tune_batch_norm = True
        self.min_scale_factor = 0.5
        self.max_scale_factor = 2.0
        self.scale_factor_step_size = 0.25
        self.atrous_rates = [6, 12, 18]
        self.output_stride = 16
        self.hard_example_mining_step = 0
        self.top_k_percent_pixels = 1.0
        self.quantize_delay_step = -1

        self.allow_memory_growth = 1
        self.gpu_memory_fraction = 1.0
        self.min_resize_value = None
        self.max_resize_value = None
        self.resize_factor = None
        self.logits_kernel_size = 1
        self.model_variant = 'mobilenet_v2'
        self.image_pyramid = []
        self.add_image_level_feature = True
        self.image_pooling_crop_size = None
        self.image_pooling_stride = [1, 1]
        self.aspp_with_batch_norm = True
        self.aspp_with_separable_conv = True
        self.multi_grid = None
        self.depth_multiplier = 1.0
        self.divisible_by = None
        self.decoder_output_stride = None
        self.decoder_use_separable_conv = True
        self.merge_method = 'max'
        self.prediction_with_upsampled_logits = True
        self.dense_prediction_cell_json = ''
        self.nas_stem_output_num_conv_filters = 20
        self.use_bounded_activation = False

        self.train_batch_size = 8

        self.db_root_dir = '/data'

        self.dataset = ''
        self.dataset_dir = ''

        self.model_info = MultiPath()
        self.train_info = MultiPath()
        self.train_split = MultiPath()

        self.log_dir = ''
        self.tb_dir = ''
        self.checkpoint_dir = ''

        self.class_info_path = 'data/classes_ice.txt'