def __init__(self): self.seq_set = -1 self.seq = () self.load = 0 self.save = 1 self.start = 0 self.load_prefix = MultiPath() self.save_prefix = MultiPath() self.results_dir_root = MultiPath() self.results_dir = MultiPath()
def __init__(self): self.cfg = () self.codec = 'H264' self.del_patch_seq = 0 self.disp_resize_factor = 1.0 self.end_id = -1 self.fname_templ = 'img' self.fps = 30 self.height = 720 self.images_ext = 'tif' self.labels_ext = 'png' self.labels_path = '' self.method = 0 self.n_classes = 3 self.n_frames = 0 self.normalize_patches = 0 self.out_ext = 'png' self.patch_ext = 'png' self.patch_height = 32 self.patch_width = 0 self.resize_factor = 1.0 self.seq_name = 'Training' self.show_img = 0 self.stacked = 0 self.start_id = 0 self.src_path = '' self.patch_seq_path = '' self.stitched_seq_path = '' self.db_root_dir = '/data' self.patch_seq_name = '' self.patch_seq_type = 'images' self.labels_dir = 'Labels' self.images_dir = 'Images' self.class_info_path = 'data/classes_ice.txt' self.width = 1280 self.model_info = MultiPath() self.train_info = MultiPath() self.train_split = MultiPath() self.dataset = ''
def __init__(self): RunParams.__init__(self) self.seq_set_info = MultiPath() self.eval_dir = MultiPath() self.mode = 1 self.evaluate = 1 self.eval_dist_type = 0 self.eval_file = 'mot_metrics.log' self.subseq_postfix = 1 self._load_prefix = None self._save_prefix = None
def __init__(self): RunParams.__init__(self) self.load_dir = '' self.load_id = -1 self.seq_set = 4 self.seq = (5, ) self.active_pt = 1 self.active_pt_dir = MultiPath() self.load_prefix = MultiPath('trained') self.save_prefix = MultiPath('trained') self.results_dir_root = MultiPath() self.results_dir = MultiPath('log')
def __init__(self): self.cfg_root = 'cfg' self.cfg_ext = 'cfg' self.cfg = () self.dataset = '' self.seq_name = MultiPath() self.image_dir = 'Images' self.labels_dir = 'Labels' self.seq_name = MultiPath() self.n_classes = 3 self.db_root_dir = '' self.src_path = '' self.labels_path = '' self.img_ext = 'tif' self.labels_ext = 'jpg' self.out_img_ext = 'jpg' self.out_labels_ext = 'png' self.py_exe = 'python36' self.seq_id = -1 self.seq_start_id = 0 self.seq_end_id = -1 self.start_id = 0 self.end_id = -1 self.enable_flip = 0 self.max_rot = 345 self.max_stride = 0 self.min_rot = 15 self.min_stride = 10 self.n_frames = 0 self.n_rot = 3 self.patch_height = 32 self.patch_width = 0 self.show_img = 0 self.parallel = 1 self.log_to_file = 0 self.log_dir = 'log'
def __init__(self): self.cfg = () self.end_id = -1 self.images_ext = 'png' self.labels_ext = 'png' self.log_dir = '' self.normalize_labels = 1 self.out_ext = 'jpg' self.save_path = '' self.save_stitched = 1 self.seg_ext = 'png' self.seg_path = '' self.selective_mode = 0 self.show_img = 0 self.start_id = 0 self.stitch = 0 self.stitch_seg = 1 self.no_labels = 1 self.class_info_path = 'data/classes_ice.txt' self.multi_sequence_db = 0 self.seg_on_subset = 0 self.add_border = 0 self.blended = 1 self.log_root_dir = 'log' self.db_root_dir = '/data' self.images_path = '' self.labels_path = '' self.labels_dir = 'labels' self.images_dir = 'images' self.dataset = '' self.model_info = MultiPath() self.train_split = MultiPath() self.vis_split = MultiPath() self.train_info = MultiPath() self.vis_info = MultiPath()
def __init__(self, name): self.path = '' self.src_dir = MultiPath(name) self.fix_frame_ids = 1 self.sort_by_frame_ids = 0 self.ignore_ioa_thresh = 0.5 self.allow_missing = 0 self.help = { 'path': 'path of the text file in MOT format from where the objects data is to be read;' 'if this is empty, then a default path is constructed from the sequence and dataset names', 'fix_frame_ids': 'convert the frame IDs in the annotations and detections from 1-based ' '(default MOT challenge format) to 0-based that is needed for internal' ' processing convenience', 'sort_by_frame_ids': 'sort data by frame IDs', 'ignored_regions': '1: read ignored_regions from annotations; ' '2: discard the regions after reading' }
def __init__(self): self.cfg = () self.add_flipped_images = False self.add_image_level_feature = False self.also_save_raw_predictions = True self.also_save_vis_predictions = 0 self.alsologtostderr = False self.aspp_with_batch_norm = True self.aspp_with_separable_conv = True self.atrous_rates = [] self.colormap_type = 'pascal' self.decoder_output_stride = None self.decoder_use_separable_conv = True self.dense_prediction_cell_json = '' self.depth_multiplier = 1.0 self.divisible_by = None self.eval_interval_secs = 0 self.eval_scales = [1.0, ] self.image_pooling_crop_size = None self.image_pooling_stride = [1, 1] self.image_pyramid = None self.logits_kernel_size = 1 self.logtostderr = False self.master = '' self.max_number_of_iterations = 1 self.max_resize_value = None self.merge_method = 'max' self.min_resize_value = None self.model_variant = 'mobilenet_v2' self.multi_grid = None self.nas_stem_output_num_conv_filters = 20 self.only_check_args = False self.op_conversion_fallback_to_while_loop = False self.output_stride = 16 self.pdb_post_mortem = False self.prediction_with_upsampled_logits = True self.profile_file = None self.quantize_delay_step = -1 self.resize_factor = None self.run_with_pdb = False self.run_with_profiling = False self.showprefixforinfo = True self.stderrthreshold = 'fatal' self.test_random_seed = 301 self.test_randomize_ordering_seed = None self.test_srcdir = '' self.use_bounded_activation = False self.use_cprofile_for_profiling = True self.v = -1 self.verbosity = -1 self.vis_batch_size = 1 self.vis_crop_size = [513, 513] self.model_info = MultiPath() self.train_info = MultiPath() self.train_split = MultiPath() self.vis_info = MultiPath() self.vis_split = MultiPath() self.dataset = '' self.vis_type = 'test' self.dataset_dir = '' self.db_root_dir = '/data' self.xml_output_file = '' self.log_dir = '' self.checkpoint_dir = '' self.vis_logdir = '' self.class_info_path = 'data/classes_ice.txt'
def __init__(self): self.logtostderr = False self.alsologtostderr = False self.stderrthreshold = 'fatal' self.showprefixforinfo = True self.v = -1 self.verbosity = -1 self.run_with_pdb = False self.pdb_post_mortem = False self.run_with_profiling = False self.profile_file = None self.use_cprofile_for_profiling = True self.only_check_args = False self.op_conversion_fallback_to_while_loop = False self.test_random_seed = 301 self.test_randomize_ordering_seed = 0 self.xml_output_file = '' self.num_clones = 1 self.clone_on_cpu = False self.num_replicas = 1 self.startup_delay_steps = 15 self.num_ps_tasks = 0 self.master = '' self.task = 0 self.log_steps = 10 self.save_interval_secs = 12 self.save_summaries_secs = 6 self.save_summaries_images = True self.profile_logdir = None self.learning_policy = 'poly' self.base_learning_rate = 0.0001 self.learning_rate_decay_factor = 0.1 self.learning_rate_decay_step = 2000 self.learning_power = 0.9 self.train_steps = 5000 self.momentum = 0.9 self.weight_decay = 4e-05 self.train_crop_size = [513, 513] self.last_layer_gradient_multiplier = 1.0 self.upsample_logits = True self.drop_path_keep_prob = 1.0 self.tf_initial_checkpoint = None self.initialize_last_layer = True self.last_layers_contain_logits_only = False self.slow_start_step = 0 self.slow_start_learning_rate = 0.0001 self.fine_tune_batch_norm = True self.min_scale_factor = 0.5 self.max_scale_factor = 2.0 self.scale_factor_step_size = 0.25 self.atrous_rates = [6, 12, 18] self.output_stride = 16 self.hard_example_mining_step = 0 self.top_k_percent_pixels = 1.0 self.quantize_delay_step = -1 self.allow_memory_growth = 1 self.gpu_memory_fraction = 1.0 self.min_resize_value = None self.max_resize_value = None self.resize_factor = None self.logits_kernel_size = 1 self.model_variant = 'mobilenet_v2' self.image_pyramid = [] self.add_image_level_feature = True self.image_pooling_crop_size = None self.image_pooling_stride = [1, 1] self.aspp_with_batch_norm = True self.aspp_with_separable_conv = True self.multi_grid = None self.depth_multiplier = 1.0 self.divisible_by = None self.decoder_output_stride = None self.decoder_use_separable_conv = True self.merge_method = 'max' self.prediction_with_upsampled_logits = True self.dense_prediction_cell_json = '' self.nas_stem_output_num_conv_filters = 20 self.use_bounded_activation = False self.train_batch_size = 8 self.db_root_dir = '/data' self.dataset = '' self.dataset_dir = '' self.model_info = MultiPath() self.train_info = MultiPath() self.train_split = MultiPath() self.log_dir = '' self.tb_dir = '' self.checkpoint_dir = '' self.class_info_path = 'data/classes_ice.txt'