Beispiel #1
0
def setup_args(parser=None):
    if parser is None:
        parser = ParlaiParser(True, True)
    train = parser.add_argument_group('Training Loop Arguments')
    train.add_argument('-et', '--evaltask',
                       help=('task to use for valid/test (defaults to the '
                             'one used for training if not set)'))
    train.add_argument('--display-examples', type='bool', default=False)
    train.add_argument('-eps', '--num-epochs', type=float, default=-1)
    train.add_argument('-ttim', '--max-train-time',
                       type=float, default=-1)
    train.add_argument('-ltim', '--log-every-n-secs',
                       type=float, default=2)
    train.add_argument('-vtim', '--validation-every-n-secs',
                       type=float, default=-1,
                       help='Validate every n seconds. Whenever the the best '
                            'validation metric is found, saves the model to '
                            'the model_file path if set.')
    train.add_argument('-stim', '--save-every-n-secs',
                       type=float, default=-1,
                       help='Saves the model to model_file.checkpoint after '
                            'every n seconds (default -1, never).')
    train.add_argument('-sval', '--save-after-valid', type='bool',
                       default=False,
                       help='Saves the model to model_file.checkpoint after '
                            'every validation (default True).')
    train.add_argument('-vme', '--validation-max-exs',
                       type=int, default=-1,
                       help='max examples to use during validation (default '
                            '-1 uses all)')
    train.add_argument('-vp', '--validation-patience',
                       type=int, default=10,
                       help=('number of iterations of validation where result'
                             ' does not improve before we stop training'))
    train.add_argument('-vmt', '--validation-metric', default='accuracy',
                       help='key into report table for selecting best '
                            'validation')
    train.add_argument('-vmm', '--validation-metric-mode', default='max',
                       type=str, choices=['max', 'min'],
                       help='how to optimize validation metric (max or min)')
    train.add_argument('-vcut', '--validation-cutoff',
                       type=float, default=1.0,
                       help='value at which training will stop if exceeded by '
                            'training metric')
    train.add_argument('-dbf', '--dict-build-first',
                       type='bool', default=True,
                       help='build dictionary first before training agent')
    train.add_argument('-lfc', '--load-from-checkpoint',
                       type='bool', default=False,
                       help='load model from checkpoint if available')
    TensorboardLogger.add_cmdline_args(parser)
    parser = setup_dict_args(parser)
    return parser
Beispiel #2
0
def setup_args(parser=None) -> ParlaiParser:
    """
    Build the ParlAI parser, adding command line args if necessary.

    :param ParlaiParser parser:
        Preexisting parser to append options to. Will be created if needed.

    :returns:
        the ParlaiParser with CLI options added.
    """
    if parser is None:
        parser = ParlaiParser(True, True, 'Train a model')
    train = parser.add_argument_group('Training Loop Arguments')
    train.add_argument(
        '-et',
        '--evaltask',
        help='task to use for valid/test (defaults to the one used for training)',
    )
    train.add_argument(
        '--final-extra-opt',
        type=str,
        default='',
        help="A '.opt' file that is used for final eval. Useful for setting skip-generation to false. 'datatype' must be included as part of the opt.",
    )
    train.add_argument(
        '--eval-batchsize',
        type=int,
        hidden=True,
        help='Eval time batch size (defaults to same as -bs)',
    )
    train.add_argument(
        '--eval-dynamic-batching',  # FIXME: see https://github.com/facebookresearch/ParlAI/issues/3367
        default=None,
        type='nonestr',
        choices={None, 'off', 'full', 'batchsort'},
        help=(
            'Set dynamic batching at evaluation time. Set to off for '
            'train-only dynamic batching. Set to none (default) to use same '
            'setting as --dynamic-batching.'
        ),
    )
    train.add_argument(
        '--num-workers',
        default=0,
        type=int,
        help='Number of background workers (training only)',
    )
    train.add_argument('--display-examples', type='bool', default=False, hidden=True)
    train.add_argument('-eps', '--num-epochs', type=float, default=-1)
    train.add_argument('-ttim', '--max-train-time', type=float, default=-1)
    train.add_argument(
        '-tstep',
        '--max-train-steps',
        '--max-lr-steps',
        type=int,
        default=-1,
        help='End training after n model updates',
    )
    train.add_argument('-ltim', '--log-every-n-secs', type=float, default=-1)
    train.add_argument(
        '-lstep',
        '--log-every-n-steps',
        type=int,
        default=50,
        help='Log every n training steps',
    )
    train.add_argument(
        '-vtim',
        '--validation-every-n-secs',
        type=float,
        default=-1,
        help='Validate every n seconds. Saves model to model_file '
        '(if set) whenever best val metric is found',
    )
    train.add_argument(
        '-vstep',
        '--validation-every-n-steps',
        type=int,
        default=-1,
        help='Validate every n training steps. Saves model to model_file '
        '(if set) whenever best val metric is found',
    )
    train.add_argument(
        '-stim',
        '--save-every-n-secs',
        type=float,
        default=-1,
        help='Saves the model to model_file.checkpoint after '
        'every n seconds (default -1, never).',
    )
    train.add_argument(
        '-sval',
        '--save-after-valid',
        type='bool',
        default=False,
        help='Saves the model to model_file.checkpoint after '
        'every validation (default %(default)s).',
    )
    train.add_argument(
        '-veps',
        '--validation-every-n-epochs',
        type=float,
        default=-1,
        help='Validate every n epochs. Saves model to model_file '
        '(if set) whenever best val metric is found',
    )
    train.add_argument(
        '-vme',
        '--validation-max-exs',
        type=int,
        default=-1,
        hidden=True,
        help='max examples to use during validation (default -1 uses all)',
    )
    train.add_argument(
        '--short-final-eval',
        default=False,
        hidden=True,
        type='bool',
        help='If true, obeys --validation-max-exs in the final '
        'validation and test evaluations.',
    )
    train.add_argument(
        '-vp',
        '--validation-patience',
        type=int,
        default=10,
        help=(
            'number of iterations of validation where result'
            ' does not improve before we stop training'
        ),
    )
    train.add_argument(
        '-vmt',
        '--validation-metric',
        default='accuracy',
        help='key into report table for selecting best validation',
    )
    train.add_argument(
        '-vmm',
        '--validation-metric-mode',
        type=str,
        choices=['max', 'min'],
        help='the direction in which to optimize the validation metric, i.e. maximize or minimize',
    )
    train.add_argument(
        '-vcut',
        '--validation-cutoff',
        type=float,
        default=1.0,
        hidden=True,
        help='value at which training will stop if exceeded by metric',
    )
    train.add_argument(
        '-lfc',
        '--load-from-checkpoint',
        type='bool',
        default=True,
        hidden=True,
        help='load model from checkpoint if available',
    )
    train.add_argument(
        '-vshare',
        '--validation-share-agent',
        default=False,
        hidden=True,
        help='use a shared copy of the agent for validation. '
        'this will eventually default to True, but '
        'currently defaults to False.',
    )
    train.add_argument(
        '-mcs',
        '--metrics',
        type=str,
        default='default',
        help='list of metrics to show/compute, e.g. all, default,'
        'or give a list split by , like '
        'ppl,f1,accuracy,hits@1,rouge,bleu'
        'the rouge metrics will be computed as rouge-1, rouge-2 and rouge-l',
    )
    train.add_argument(
        '-micro',
        '--aggregate-micro',
        type='bool',
        default=False,
        help='Report micro-averaged metrics instead of macro averaged metrics.',
        recommended=False,
    )
    train.add_argument(
        '--world-logs',
        type=str,
        default='',
        help='Saves a jsonl file of the world logs.'
        'Set to the empty string to not save at all.',
    )
    train.add_argument(
        '--save-format',
        type=str,
        default='conversations',
        choices=['conversations', 'parlai'],
    )
    WorldLogger.add_cmdline_args(parser, partial_opt=None)
    TensorboardLogger.add_cmdline_args(parser, partial_opt=None)
    WandbLogger.add_cmdline_args(parser, partial_opt=None)

    parser = setup_dict_args(parser)
    return parser
Beispiel #3
0
def setup_args(parser=None) -> ParlaiParser:
    """
    Build the ParlAI parser, adding command line args if necessary.

    :param ParlaiParser parser:
        Preexisting parser to append options to. Will be created if needed.

    :returns:
        the ParlaiParser with CLI options added.
    """
    if parser is None:
        parser = ParlaiParser(True, True, 'Train a model')
    train = parser.add_argument_group('Training Loop Arguments')
    train.add_argument(
        '-et',
        '--evaltask',
        help=
        'task to use for valid/test (defaults to the one used for training)',
    )
    train.add_argument(
        '--eval-batchsize',
        type=int,
        hidden=True,
        help='Eval time batch size (defaults to same as -bs)',
    )
    train.add_argument('--display-examples',
                       type='bool',
                       default=False,
                       hidden=True)
    train.add_argument('-eps', '--num-epochs', type=float, default=-1)
    train.add_argument('-ttim', '--max-train-time', type=float, default=-1)
    train.add_argument('-ltim', '--log-every-n-secs', type=float, default=10)
    train.add_argument(
        '-vtim',
        '--validation-every-n-secs',
        type=float,
        default=-1,
        help='Validate every n seconds. Saves model to model_file '
        '(if set) whenever best val metric is found',
    )
    train.add_argument(
        '-stim',
        '--save-every-n-secs',
        type=float,
        default=-1,
        help='Saves the model to model_file.checkpoint after '
        'every n seconds (default -1, never).',
    )
    train.add_argument(
        '-sval',
        '--save-after-valid',
        type='bool',
        default=False,
        help='Saves the model to model_file.checkpoint after '
        'every validation (default %(default)s).',
    )
    train.add_argument(
        '-veps',
        '--validation-every-n-epochs',
        type=float,
        default=-1,
        help='Validate every n epochs. Saves model to model_file '
        '(if set) whenever best val metric is found',
    )
    train.add_argument(
        '-vme',
        '--validation-max-exs',
        type=int,
        default=-1,
        hidden=True,
        help='max examples to use during validation (default -1 uses all)',
    )
    train.add_argument(
        '--short-final-eval',
        default=False,
        hidden=True,
        type='bool',
        help='If true, obeys --validation-max-exs in the final '
        'validation and test evaluations.',
    )
    train.add_argument(
        '-vp',
        '--validation-patience',
        type=int,
        default=10,
        help=('number of iterations of validation where result'
              ' does not improve before we stop training'),
    )
    train.add_argument(
        '-vmt',
        '--validation-metric',
        default='accuracy',
        help='key into report table for selecting best validation',
    )
    train.add_argument(
        '-vmm',
        '--validation-metric-mode',
        type=str,
        choices=['max', 'min'],
        help='how to optimize validation metric (max or min)',
    )
    train.add_argument(
        '-vcut',
        '--validation-cutoff',
        type=float,
        default=1.0,
        hidden=True,
        help='value at which training will stop if exceeded by metric',
    )
    train.add_argument(
        '-lfc',
        '--load-from-checkpoint',
        type='bool',
        default=True,
        hidden=True,
        help='load model from checkpoint if available',
    )
    train.add_argument(
        '-vshare',
        '--validation-share-agent',
        default=False,
        hidden=True,
        help='use a shared copy of the agent for validation. '
        'this will eventually default to True, but '
        'currently defaults to False.',
    )
    train.add_argument(
        '-mcs',
        '--metrics',
        type=str,
        default='default',
        help='list of metrics to show/compute, e.g. all, default,'
        'or give a list split by , like '
        'ppl,f1,accuracy,hits@1,rouge,bleu'
        'the rouge metrics will be computed as rouge-1, rouge-2 and rouge-l',
    )
    train.add_argument(
        '-micro',
        '--aggregate-micro',
        type='bool',
        default=False,
        help='Report micro-averaged metrics instead of macro averaged metrics.',
        recommended=False,
    )
    TensorboardLogger.add_cmdline_args(parser)

    parser = setup_dict_args(parser)
    return parser
Beispiel #4
0
def setup_args(parser=None):
    if parser is None:
        parser = ParlaiParser(True, True, 'Train a model')
    parser.add_pytorch_datateacher_args()
    train = parser.add_argument_group('Training Loop Arguments')
    train.add_argument('-et',
                       '--evaltask',
                       help=('task to use for valid/test (defaults to the '
                             'one used for training if not set)'))
    train.add_argument('--eval-batchsize',
                       type=int,
                       hidden=True,
                       help='Eval time batch size (defaults to same as -bs)')
    train.add_argument('--display-examples',
                       type='bool',
                       default=False,
                       hidden=True)
    train.add_argument('-eps', '--num-epochs', type=float, default=-1)
    train.add_argument('-ttim', '--max-train-time', type=float, default=-1)
    train.add_argument('-ltim', '--log-every-n-secs', type=float, default=2)
    train.add_argument(
        '-vtim',
        '--validation-every-n-secs',
        type=float,
        default=-1,
        help='Validate every n seconds. Saves model to model_file '
        '(if set) whenever best val metric is found')
    train.add_argument('-stim',
                       '--save-every-n-secs',
                       type=float,
                       default=-1,
                       help='Saves the model to model_file.checkpoint after '
                       'every n seconds (default -1, never).')
    train.add_argument('-sval',
                       '--save-after-valid',
                       type='bool',
                       default=False,
                       help='Saves the model to model_file.checkpoint after '
                       'every validation (default %(default)s).')
    train.add_argument(
        '-veps',
        '--validation-every-n-epochs',
        type=float,
        default=-1,
        help='Validate every n epochs. Saves model to model_file '
        '(if set) whenever best val metric is found')
    train.add_argument('-vme',
                       '--validation-max-exs',
                       type=int,
                       default=-1,
                       hidden=True,
                       help='max examples to use during validation (default '
                       '-1 uses all)')
    train.add_argument('--short-final-eval',
                       default=False,
                       hidden=True,
                       type='bool',
                       help='If true, obeys --validation-max-exs in the final '
                       'validation and test evaluations.')
    train.add_argument('-vp',
                       '--validation-patience',
                       type=int,
                       default=10,
                       help=('number of iterations of validation where result'
                             ' does not improve before we stop training'))
    train.add_argument('-vmt',
                       '--validation-metric',
                       default='accuracy',
                       help='key into report table for selecting best '
                       'validation')
    train.add_argument('-vmm',
                       '--validation-metric-mode',
                       type=str,
                       choices=['max', 'min'],
                       help='how to optimize validation metric (max or min)')
    train.add_argument('-vcut',
                       '--validation-cutoff',
                       type=float,
                       default=1.0,
                       hidden=True,
                       help='value at which training will stop if exceeded by '
                       'training metric')
    train.add_argument('-dbf',
                       '--dict-build-first',
                       hidden=True,
                       type='bool',
                       default=True,
                       help='build dictionary first before training agent')
    train.add_argument('-lfc',
                       '--load-from-checkpoint',
                       type='bool',
                       default=False,
                       hidden=True,
                       help='load model from checkpoint if available')
    train.add_argument('-vshare',
                       '--validation-share-agent',
                       default=False,
                       hidden=True,
                       help='use a shared copy of the agent for validation. '
                       'this will eventually default to True, but '
                       'currently defaults to False.')
    TensorboardLogger.add_cmdline_args(parser)
    parser = setup_dict_args(parser)
    return parser
def setup_args():
    """
    Use create test env setting
    :return: opt
    """
    parser = setup_dict_args()

    # 'dot', 'bilinear', 'cos'
    score_method = 'dot'
    # 'scale', 'sigmoid', 'none', 'scalesigmoid'
    score_normalize = 'scale'
    # 'sum', 'inc', 'soft'
    score_train = 'soft'

    batch_size = 2
    validation_batch_size = 8
    candidates_num = 2
    val_candidates_num = 32
    sent_hidden_size = -1
    dialog_hidden_size = -1
    weight_decay = 1e-5
    learning_rate = 1e-4
    bert_learning_rate = 6.25e-6
    dropout = 0.1
    input_dropout = 0
    bidirectional = False
    sparse = 1e-2
    # {'none', 'general'}
    attention = 'general'
    # {'cross_entropy', 'margin'}
    criterion = 'margin'
    marginloss_margin = 0.5

    optim_method = 'adam'
    validation_every_n_secs = 2400
    log_every_n_secs = 20
    num_epoch = 50
    validation_exs = 5000
    lr_impatience = 5
    numlayers = 1

    cri = criterion
    if criterion == 'margin':
        cri += str(marginloss_margin)

    exp_name = VERSION

    task_name = setup_task()
    parser.set_defaults(
        exp=exp_name,  # name for experiment
        task=task_name,
        batchsize=batch_size,
        validation_batch_size=validation_batch_size,
        dict_include_valid=True,
        dict_tokenizer='split',
        dict_nulltoken=SpecialToken.pad,
        dict_starttoken=SpecialToken.start,
        dict_endtoken=SpecialToken.end,
        dict_unktoken=SpecialToken.unk,
        datatype='train',
        # model configuration
        model='agents.receiver.receiver:ReceiverAgent',
        model_file=os.path.join(os.path.abspath(RECEIVER_DIR),
                                '{}.model'.format(exp_name)),
        init_transmitter=os.path.join(os.path.abspath(RECEIVER_DIR),
                                      '{}.model'.format(exp_name)),
        # validation configuration
        validation_every_n_secs=validation_every_n_secs,
        # in default, this can be chosen from hit@k, f1, bleu, accuracy
        # here only accuracy and hit@k make sense
        validation_metric='hits@1',
        validation_metric_mode='max',
        # Stop training when the metrics cannot meet the best result for
        # validation_patience times.
        validation_patience=15,
        log_every_n_secs=log_every_n_secs,
        # device configuration
        gpu=0,
        tensorboard_log=True,
        tensorboard_tag='exp',
        tensorboard_metrics='loss,hits@1,hits@5,hits@10,lr',
        # teacher negative sampling num
        negative_sample_num=candidates_num - 1,
        valid_negative_sample_num=val_candidates_num - 1,
        # can be set as all, which will show all
        # the metrics in training
        metrics='loss,hits@1,lr',
        tensorboard_comment='',  # add to the tensorboard output
        num_epochs=num_epoch,  # total number of epochs
        max_train_time=60000,
        save_every_n_secs=1200,
        validation_every_n_epochs=1,
        # enable this when debugging
        display_examples=False,
        # limitation of the number of examples if exs > 0
        validation_max_exs=validation_exs,
        # when the accuracy meet this value, stop training
        validation_cutoff=0.999,
        no_cuda=False,
        # {'random', 'glove', 'glove_fixed'}
        embedding_type="glove_fixed",
        embeddingsize=300,
        sent_hiddensize=sent_hidden_size,
        dialog_embedding_size=dialog_hidden_size,
        learningrate=learning_rate,
        weight_decay=weight_decay,
        bert_learning_rate=bert_learning_rate,
        bidirectional=bidirectional,
        dropout=dropout,
        input_dropout=input_dropout,
        attention=attention,
        criterion=criterion,
        lr_impatience=lr_impatience,
        marginloss_margin=marginloss_margin,
        optimizer=optim_method,
        numlayers=numlayers,
        sparse=sparse,
        score_train=score_train,
        score_normalize=score_normalize,
        score_method=score_method)
    opt = parser.parse_args([])
    # Override the setting which is saved in the .opt file
    opt['override'] = dict(
        # Whether load model from the latest checkpoint
        load_from_checkpoint=True)
    return opt