def audioAnalysis(time, path): ans = receive2.data_request(duration=time, path=path) if ans == True: name1 = 'tempdata' file1 = open(path + name1 + '.txt', 'r') comb1 = parseData.parse(file1, 'comb') mean_magnitude1 = parseData.calc_mean_magnitude(comb1, 128, path) max_val1 = parseData.calc_max_val(comb1, 128, path) min_val1 = parseData.calc_min_val(comb1, 128, path)
def detect(curr): if True: #time.time() - curr > secondInterval: snapshot.snapshot() results = parseData.parse("snapshot.jpg") reservationLicense = "" #print "Requesting plate from parent" socket.send("1".encode("utf8")) #print "Waiting for response" reservationLicense = socket.recv().decode("utf8") #print "Received response from parent: " + reservationLicense if len(results) > 0: print "Detected vehicle, seeing if it matches a reservation" for result in results: print "Comparing " + result + " with " + reservationLicense if result == reservationLicense: print "Found match" socket.send(result.encode("utf8")) try: response = socket.recv().decode("utf8") except: sys.exit() #sys.stdout.flush() return result print "No match found" socket.send("NA".encode("utf8")) try: response = socket.recv().decode("utf8") except: sys.exit() #sys.stdout.flush() else: print "No detections" #print("No vehicle detected") socket.send("NA".encode("utf8")) try: response = socket.recv().decode("utf8") except: sys.exit() #sys.stdout.flush() return "NA"
import parseData import analysis path = r"C:\Users\Yijun\Desktop\Amazon\reviews_Clothing,_Shoes_&_Jewelry.txt" pathProduct = r"C:\Users\Yijun\Desktop\Amazon\meta_Clothing,_Shoes_&_Jewelry.txt" outfile = r"C:\Users\Yijun\Desktop\Amazon\meta_shoes_unique.txt" outfile2 = r"C:\Users\Yijun\Desktop\Amazon\reviews_shoes.txt" outfile3 = r"C:\Users\Yijun\Desktop\Amazon\meta_shoes_hasReview.txt" outfile4 = r"C:\Users\Yijun\Desktop\Amazon\meta_shoes_unique+review+price.txt" outfile5 = r"C:\Users\Yijun\Desktop\Amazon\meta_shoes_unique+fifteen_review+price.txt" # separate shoes datac parseData.parseAndWrite(pathProduct, outfile, "Shoes") shoes = parseData.parse(outfile) # extract shoe reviews productIDs = set() for item in shoes: if item.has_key('asin'): productIDs.add(item['asin']) parseData.parseAndWrite_constraint(path, outfile2, productIDs) # extract shoe product data that has review reviews = parseData.parse(outfile2) len(reviews) # 1521651 unique = set() for i in reviews:
import numpy import scipy.optimize import parseData import analysis pathProducts = r"C:\Users\Yijun\Desktop\Amazon\meta_shoes_unique+fifteen_review+price.txt" pathReviews = r"C:\Users\Yijun\Desktop\Amazon\reviews_shoes_unique+fifteen_review+price.txt" pathLabels = r"C:\Users\Yijun\Desktop\Amazon\labels.txt" shoes = parseData.parse(pathProducts) reviews = parseData.parse(pathReviews) labels = parseData.loadLabels(pathLabels) sample_shoes = dict() for i in shoes: if i['asin'] in labels.keys(): sample_shoes[i['asin']] = i sample_reviews = list() for i in reviews: if i['asin'] in labels.keys(): sample_reviews.append(i) def feature(key): feat = [1] feat.append(sample_shoes[key]['price']) # price feature count = 0 for i in sample_reviews: if i['asin'] == key: count += 1
import random import parseData import analysis outfile = r"C:\Users\Yijun\Desktop\Amazon\meta_shoes_unique.txt" # parse shoes data shoes = parseData.parse(outfile) len(shoes) # 366654 # randomly choose 100 data sample = random.sample(shoes, 100) for i in range(0,100): print sample[i]['asin'] for i in range(0,100): print sample[i]['title'] for i in range(0,100): print sample[i]['imUrl'] for i in range(0,100): if sample[i].has_key('price'): print sample[i]['price'] else: print sample
import parseData import analysis import numpy import matplotlib.pyplot from scipy.stats import gaussian_kde import operator outfile2 = r"C:\Users\Yijun\Desktop\Amazon\reviews_shoes.txt" outfile3 = r"C:\Users\Yijun\Desktop\Amazon\meta_shoes_hasReview.txt" shoes = parseData.parse(outfile3) reviews = parseData.parse(outfile2) # find out flats that has price flats = list() for i in shoes: if i.has_key('price'): for k in i['categories']: for key in k: if key == "Flats": flats.append(i) len(flats) # 2770 # prepare x and y; x is price, y is number of reviews x = list() y = list() for i in flats: x.append(i['price'])
from pybrain.tools.shortcuts import buildNetwork from pybrain.datasets import SupervisedDataSet from pybrain.supervised.trainers import BackpropTrainer from parseData import parse from pybrain.structure import MDLSTMLayer, LinearLayer, SigmoidLayer, SoftmaxLayer, TanhLayer, GaussianLayer import matplotlib.pyplot as plt import random #parsing data from file dataSet = parse("data.csv") random.shuffle(dataSet) #shuffle(dataSet) #parameters of network net = buildNetwork(3, 20, 1, bias=True, hiddenclass=SigmoidLayer, outclass=SigmoidLayer) #net = buildNetwork(3, 2, 1, bias=True, hiddenclass=SoftmaxLayer, outclass=LinearLayer) print(net.modules) #parameters of dataset and testSet ds = SupervisedDataSet(3, 1) ts = SupervisedDataSet(3, 1) #Load data to training dataset buf = [] for item in dataSet[2000:10000]: ds.addSample(item[0], item[1]) for item in dataSet[1000:2000]: ts.addSample(item[0], item[1]) trainer = BackpropTrainer(net, ds) #training for i in range(40):