Beispiel #1
0
def run(**kwargs):
  """"""
  #pdb.set_trace()
  # Get the special arguments
  save_dir = kwargs.pop('save_dir')
  save_metadir = kwargs.pop('save_metadir')
  conllu_files = kwargs.pop('conllu_files')
  output_dir = kwargs.pop('output_dir')
  output_filename = kwargs.pop('output_filename')
  testing = kwargs.pop('testing')
  debug = kwargs.pop('debug')
  nornn = kwargs.pop('nornn')
  check_iter = kwargs.pop('check_iter')
  gen_tree = kwargs.pop('gen_tree')
  get_argmax = kwargs.pop('get_argmax')
  # Get the cl-defined options
  kwargs = {key: value for key, value in six.iteritems(kwargs) if value is not None}
  for section, values in six.iteritems(kwargs):
    if section in section_names:
      values = [value.split('=', 1) for value in values]
      kwargs[section] = {opt: value for opt, value in values}
  if 'DEFAULT' not in kwargs:
    kwargs['DEFAULT'] = {}
    
  # Figure out the save_directory
  if save_metadir is not None:
    kwargs['DEFAULT']['save_metadir'] = save_metadir
  if save_dir is None:
    save_dir = Config(**kwargs).get('DEFAULT', 'save_dir')
  config_file = os.path.join(save_dir, 'config.cfg')
  namelist=save_dir.split('GraphParserNetwork')
  kwargs['DEFAULT']['save_dir'] = save_dir
  #kwargs['DEFAULT']['save_dir'] = namelist[0]+'GraphParserNetwork'

  if testing:
    #kwargs['DEFAULT']['AUTO_dir'] = 'True'
    #kwargs['DEFAULT']['modelname'] = namelist[-1]
    kwargs['CoNLLUDataset']={}
    if debug:
      kwargs['CoNLLUDataset']['batch_size'] = 1000
      kwargs['CoNLLUDataset']['max_buckets'] = 30
    else:
      kwargs['CoNLLUDataset']['batch_size'] = 1000
  config = Config(defaults_file='', config_file=config_file, **kwargs)
  with open('debug.cfg', 'w') as f:
    config.write(f)
  network_class = config.get('DEFAULT', 'network_class')
  network_list = config.get(network_class, 'input_network_classes')
  input_networks, networks = resolve_network_dependencies(config, network_class, network_list, {})
  NetworkClass = getattr(parser, network_class)
  network = NetworkClass(input_networks=input_networks, config=config)
  network.parse(conllu_files, output_dir=output_dir, output_filename=output_filename, testing=testing, debug=debug,nornn=nornn, check_iter=check_iter, gen_tree=gen_tree, get_argmax=get_argmax)
  return
Beispiel #2
0
def train(**kwargs):
  """"""
  
  # Get the special arguments
  load = kwargs.pop('load')
  force = kwargs.pop('force')
  noscreen = kwargs.pop('noscreen')
  save_dir = kwargs.pop('save_dir')
  save_metadir = kwargs.pop('save_metadir')
  network_class = kwargs.pop('network_class')
  config_file = kwargs.pop('config_file')
  
  # Get the cl-defined options
  kwargs = {key: value for key, value in six.iteritems(kwargs) if value is not None}
  for section, values in six.iteritems(kwargs):
    if section in section_names:
      values = [value.split('=', 1) for value in values]
      kwargs[section] = {opt: value for opt, value in values}
  if 'DEFAULT' not in kwargs:
    kwargs['DEFAULT'] = {}
  kwargs['DEFAULT']['network_class'] = network_class
    
  # Figure out the save_directory
  if save_metadir is not None:
    kwargs['DEFAULT']['save_metadir'] = save_metadir
  if save_dir is not None:
    kwargs['DEFAULT']['save_dir'] = save_dir
  config = Config(config_file=config_file, **kwargs)
  save_dir = config.get('DEFAULT', 'save_dir')
  
  # If not loading, ask the user if they want to overwrite the directory
  if not load and os.path.isdir(save_dir):
    if not force:
      input_str = ''
      while input_str not in ('y', 'n', 'yes', 'no'):
        input_str = input('{} already exists. It will be deleted if you continue. Do you want to proceed? [Y/n] '.format(save_dir)).lower()
      if input_str in ('n', 'no'):
        print()
        sys.exit(0)
    elif noscreen:
      sys.exit(0)
    shutil.rmtree(save_dir)
  
  # If the save_dir wasn't overwritten, load its config_file
  if os.path.isdir(save_dir):
    config_file = os.path.join(save_dir, 'config.cfg')
  else:
    os.makedirs(save_dir)
    os.system('git rev-parse HEAD >> {}'.format(os.path.join(save_dir, 'HEAD')))
  
  network_list = config.get(network_class, 'input_network_classes')
  if not load:
    with open(os.path.join(save_dir, 'config.cfg'), 'w') as f:
      config.write(f)
  input_networks, networks = resolve_network_dependencies(config, network_class, network_list, {})
  NetworkClass = getattr(parser, network_class)
  network = NetworkClass(input_networks=input_networks, config=config)
  network.train(load=load, noscreen=noscreen)
  return
Beispiel #3
0
def set_config(config_file, two_gpu=False):
	kwargs={}
	kwargs['GraphParserNetwork']={}
	if two_gpu:
		kwargs['GraphParserNetwork']['two_gpu']=True
	else:
		kwargs['GraphParserNetwork']['two_gpu']=False
	config = Config(config_file=config_file, **kwargs)
	with open(config_file, 'w') as f:
		config.write(f)
Beispiel #4
0
def run(**kwargs):
    """"""

    # Get the special arguments
    save_dir = kwargs.pop('save_dir')
    save_metadir = kwargs.pop('save_metadir')
    conllu_files = kwargs.pop('conllu_files')
    output_dir = kwargs.pop('output_dir')
    output_filename = kwargs.pop('output_filename')

    # Get the cl-defined options
    kwargs = {
        key: value
        for key, value in six.iteritems(kwargs) if value is not None
    }
    for section, values in six.iteritems(kwargs):
        if section in section_names:
            values = [value.split('=', 1) for value in values]
            kwargs[section] = {opt: value for opt, value in values}
    if 'DEFAULT' not in kwargs:
        kwargs['DEFAULT'] = {}

    # Figure out the save_directory
    if save_metadir is not None:
        kwargs['DEFAULT']['save_metadir'] = save_metadir
    if save_dir is None:
        save_dir = Config(**kwargs).get('DEFAULT', 'save_dir')
    config_file = os.path.join(save_dir, 'config.cfg')
    kwargs['DEFAULT']['save_dir'] = save_dir

    config = Config(defaults_file='', config_file=config_file, **kwargs)
    with open('debug.cfg', 'w') as f:
        config.write(f)
    network_class = config.get('DEFAULT', 'network_class')
    network_list = config.get(network_class, 'input_network_classes')
    input_networks, networks = resolve_network_dependencies(
        config, network_class, network_list, {})
    NetworkClass = getattr(parser, network_class)
    network = NetworkClass(input_networks=input_networks, config=config)
    network.parse(conllu_files,
                  output_dir=output_dir,
                  output_filename=output_filename)
    return
Beispiel #5
0
    def __init__(self, tup_cmd):
        self._tup_cmdLine = tuple(i for i in tup_cmd if "sameMachine" not in i)

        self._str_workload = ""
        self._tup_workload = ()

        self._str_tools = ""
        self._tup_tools = ()
        self._tup_simulators = ()

        self._str_tasks = ""
        self._tup_tasks = ()

        self._str_bench = ""
        self._tup_bench = ()

        self.trials = 0
        self.pid = 0
        self.pinThreads = 0
        self.cores = 0
        self.str_output = ""
        self.verbose = 0
        self.normalize = False
        self.roiOnly = False
        self.project = ""
        self.lockstep = False
        self.siteTracking = False
        self.attachPid = False
        self.generateTrace = False
        self.printOnly = False
        self.confIndex = -1
        # Allow [parallelBenches] benchmarks to run parallelly
        self.parallelBenches = 1
        self.generateEnergyStats = False

        self.pinTool = ""

        self.nonMesiSimulators = 0

        self._isMesiPresent = False
        self._isViserPresent = False
        self._isRCCSIPresent = False
        self._isPausePresent = False

        self.output = None
        self.jassert = False
        self.xassert = False
        self.sameMachine = None
        self.period = None

        self.config = Config()
Beispiel #6
0
def resolve_network_dependencies(config, network_class, network_list, networks):
  if network_list in ('None', ''):
    return set(), networks
  else:
    network_list = network_list.split(':')
    if network_class not in networks:
      for _network_class in network_list:
        config_file = os.path.join(config.get('DEFAULT', _network_class + '_dir'), 'config.cfg')
        _config = Config(config_file=config_file)
        _network_list = _config.get(_network_class, 'input_network_classes')
        input_networks, networks = resolve_network_dependencies(_config, _network_class, _network_list, networks)
        NetworkClass = getattr(parser, _network_class)
        networks[_network_class] = NetworkClass(input_networks=input_networks, config=config)
    return set(networks[_network_class] for _network_class in network_list), networks
Beispiel #7
0
                               default='tag',
                               choices=['tag', 'char', 'bert'],
                               help='choices of additional features')
    args = parser.parse_args()
    logging.basicConfig(filename=args.output,
                        filemode='w',
                        format='%(asctime)s %(levelname)-8s %(message)s',
                        level=logging.INFO,
                        datefmt='%Y-%m-%d %H:%M:%S')

    logging.info(f"Set the max num of threads to {args.threads}")
    logging.info(f"Set the seed for generating random numbers to {args.seed}")
    logging.info(f"Set the device with ID {args.device} visible")
    torch.set_num_threads(args.threads)

    torch.manual_seed(args.seed)

    os.environ['CUDA_VISIBLE_DEVICES'] = args.device

    args.fields = os.path.join(args.file, 'fields')
    args.model = os.path.join(args.file, 'model')
    args.device = 'cuda' if torch.cuda.is_available() else 'cpu'

    logging.info(f"Override the default configs with parsed arguments")
    args = Config(args.conf).update(vars(args))
    logging.info(args)

    logging.info(f"Run the subcommand in mode {args.mode}")
    cmd = subcommands[args.mode]
    cmd(args)
Beispiel #8
0
     kwargs['GraphParserNetwork'][
         'input_vocab_classes'] = 'FormMultivocab:XPOSTokenVocab'
     kwargs['FormMultivocab']['use_subtoken_vocab'] = 'True'
 elif 'no_char' in cfg:
     kwargs['GraphParserNetwork'][
         'input_vocab_classes'] = 'FormMultivocab:XPOSTokenVocab:LemmaTokenVocab'
     kwargs['FormMultivocab']['use_subtoken_vocab'] = 'False'
 else:
     kwargs['GraphParserNetwork'][
         'input_vocab_classes'] = 'FormMultivocab:XPOSTokenVocab:LemmaTokenVocab'
     kwargs['FormMultivocab']['use_subtoken_vocab'] = 'True'
 #pdb.set_trace()
 if 'decay' not in cfg:
     kwargs['Optimizer']['decay_rate'] = 1
 kwargs['DEFAULT']['modelname'] = cfg
 config = Config(config_file=config_file, **kwargs)
 cfg_dir = 'config_gen/' + cfg + '.cfg'
 with open(cfg_dir, 'w') as f:
     config.write(f)
 if args.twogpu:
     if args.autorun:
         train_case='CUDA_VISIBLE_DEVICES='+str(index%2*2)+','+str(index%2*2+1)+' nohup python3 -u main.py train GraphParserNetwork --nowarning --config_file '\
         +cfg_dir+' --noscreen > log/'+cfg+'\n'
     else:
         train_case='CUDA_VISIBLE_DEVICES='+str(index%2*2)+','+str(index%2*2+1)+' nohup python3 -u main.py train GraphParserNetwork --config_file '\
         +cfg_dir+' --noscreen > log/'+cfg+'&'+'\n'
 else:
     train_case='CUDA_VISIBLE_DEVICES='+str(index%3)+',3'' nohup python3 -u main.py train GraphParserNetwork --config_file '\
     +cfg_dir+' --noscreen > log/'+cfg+'&'+'\n'
 writer.write(train_case)
 index += 1
Beispiel #9
0
        subparser.add_argument('--threads',
                               '-t',
                               default=4,
                               type=int,
                               help='max num of threads')
    args = parser.parse_args()

    print(f"Set the max num of threads to {args.threads}")
    if args.seed != -1:
        print(f"Set the seed for generating random numbers to {args.seed}")
        torch.manual_seed(args.seed)
    else:
        seed = torch.initial_seed() % 10000000
        torch.manual_seed(seed)
        print(f"the seed of random numbers generating {seed}")
    print(f"Set the device with ID {args.device} visible")
    torch.set_num_threads(args.threads)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.device
    args.device = 'cuda' if torch.cuda.is_available() else 'cpu'

    print(f"Override the default configs with parsed arguments")
    args.vocab = os.path.join(args.file, args.vocab)
    args.model = os.path.join(args.file, args.model)
    config = Config(args.conf)
    config.update(vars(args))
    print(config)

    print(f"Run the subcommand in mode {args.mode}")
    cmd = subcommands[args.mode]
    cmd(config)
Beispiel #10
0
def hpo(**kwargs):
  """"""
  
  # Get the special arguments
  noscreen = kwargs.pop('noscreen')
  save_dir = kwargs.pop('save_dir')
  save_metadir = kwargs.pop('save_metadir')
  network_class = kwargs.pop('network_class')
  config_file = kwargs.pop('config_file')
  rand_file = kwargs.pop('rand_file')
  eval_metric = kwargs.pop('eval_metric')
  
  # Get the cl-defined options
  kwargs = {key: value for key, value in six.iteritems(kwargs) if value is not None}
  for section, values in six.iteritems(kwargs):
    if section in section_names:
      values = [value.split('=', 1) for value in values]
      kwargs[section] = {opt: value for opt, value in values}
  if 'DEFAULT' not in kwargs:
    kwargs['DEFAULT'] = {}
  kwargs['DEFAULT']['network_class'] = network_class
    
  # Figure out the save_directory
  if save_metadir is not None:
    kwargs['DEFAULT']['save_metadir'] = save_metadir
  if save_dir is None:
    save_dir = Config(**kwargs).get('DEFAULT', 'save_dir')
  if not os.path.exists(save_dir):
    os.makedirs(save_dir)
  
  # Get the randomly generated options and possibly add them
  #-------------------------------------------------------------
  lang = kwargs['DEFAULT']['LANG']
  treebank = kwargs['DEFAULT']['TREEBANK']
  lc = kwargs['DEFAULT']['LC']
  tb = kwargs['DEFAULT']['TB']
  base = 'data/CoNLL18/UD_{}-{}/{}_{}-ud-dev.conllu'.format(lang, treebank, lc, tb)
  def eval_func(save_dir):
    return evaluate(base, os.path.join(save_dir, 'parsed', base), eval_metric)
  #-------------------------------------------------------------
  rargs = next(MVGHPO(rand_file, save_dir, eval_func=eval_func))
  for section in rargs:
    if section not in kwargs:
      kwargs[section] = rargs[section]
    else:
      for option, value in six.iteritems(rargs[section]):
        if option not in kwargs[section]:
          kwargs[section][option] = value
  save_dir = os.path.join(save_dir, str(int(time.time()*100000)))
  
  # If not loading, ask the user if they want to overwrite the directory
  if os.path.isdir(save_dir):
    print()
    sys.exit(0)
  else:
    os.mkdir(save_dir)
    os.system('git rev-parse HEAD >> {}'.format(os.path.join(save_dir, 'HEAD')))
  
  kwargs['DEFAULT']['save_dir'] = save_dir
  config = Config(config_file=config_file, **kwargs)
  network_list = config.get(network_class, 'input_network_classes')
  with open(os.path.join(save_dir, 'config.cfg'), 'w') as f:
    config.write(f)
  input_networks, networks = resolve_network_dependencies(config, network_class, network_list, {})
  NetworkClass = getattr(parser, network_class)
  network = NetworkClass(input_networks=input_networks, config=config)
  network.train(noscreen=noscreen)
  return
Beispiel #11
0
    if path_or_name(args.model) == "name":
        args.model = os.path.join(args.folder, "models", args.model)

    if not args.path_annotation_schema:
        args.path_annotation_schema = os.path.join(args.folder,
                                                   "annotation_schema.json")
    print(args.path_annotation_schema)
    # else:
    #     args.model = os.path.join(args.models, args.model)
    print("args.model", args.model)
    # print(f"Set the max num of threads to {args.threads}")
    print(f"Set the seed for generating random numbers to {args.seed}")
    # print(f"Set the device with ID {args.device} visible")
    # torch.set_num_threads(args.threads)
    torch.manual_seed(args.seed)
    # os.environ['CUDA_VISIBLE_DEVICES'] = args.device

    args.device, args.train_on_gpu, args.multi_gpu = get_gpus_configuration(
        args.gpu_ids)

    print(f"Override the default configs with parsed arguments")
    path_file_directory = pathlib.Path(__file__).parent.absolute()
    args = Config(os.path.join(path_file_directory,
                               args.conf)).update(vars(args))
    print(args)

    print(f"Run the subcommand in mode {args.mode}")
    cmd = subcommands[args.mode]
    cmd(args)