Beispiel #1
0
 def _group_channels(url_list, order):
     """
     given a list of img urls, this will group them into the same well and
     site, per plate
     Arguments:
     -----------
     order : boolean
         sort channel numbers into numerical order
     """
     grouped_list = []
     urls = [parse.img_filename(i) for i in url_list]
     tmp_df = pd.DataFrame(list(url_list), columns=["img_url"])
     tmp_df["plate_name"] = [parse.plate_name(i) for i in url_list]
     tmp_df["plate_num"] = [parse.plate_num(i) for i in url_list]
     # get_well and get_site use the image URL rather than the full path
     tmp_df["well"] = [parse.img_well(i) for i in urls]
     tmp_df["site"] = [parse.img_site(i) for i in urls]
     grouped_df = tmp_df.groupby(
         ["plate_name", "plate_num", "well", "site"])
     if order is True:
         # order by channel
         for _, group in grouped_df:
             grouped = list(group["img_url"])
             channel_nums = [parse.img_channel(i) for i in grouped]
             # create tuple(path, channel_number) and sort by channel_number
             sort_im = sorted(zip(grouped, channel_nums),
                              key=lambda x: x[1])
             # return only the file-paths back from the list of tuples
             grouped_list.append([i[0] for i in sort_im])
     elif order is False:
         for _, group in grouped_df:
             grouped_list.append(list(group["img_url"]))
     else:
         raise ValueError("order needs to be a boolean")
     return grouped_list
Beispiel #2
0
    def keep_channels(img_list, channels):
        """
        given a list of image paths, this will keep specified channel numbers,
        and remove all others.

        Parameters:
        -----------
        img_list : list
            list of image URLs
        channels : list of integers
            list of channel numbers to keep

        Returns:
        --------
        list of image URLs
        """
        # find if img_urls are full paths or just filenames
        if utils.is_full_path(img_list[0]):
            just_file_path = [parse.img_filename(i) for i in img_list]
        else:
            just_file_path = img_list
        channel_nums = [parse.img_channel(i) for i in just_file_path]
        # make sure we zip the original img_list, *not* just_file_path
        ch_img_tup = zip(channel_nums, img_list)
        filtered_tup = [i for i in ch_img_tup if i[0] in channels]
        _, img_urls = zip(*filtered_tup)
        return img_urls
Beispiel #3
0
def test_ImageDict_keep_channels():
    channels_to_keep = [1, 2, 3]
    ImgDict = image_prep.ImageDict()
    ans = ImgDict.keep_channels(IMG_URLS, channels_to_keep)
    # parse channel numbers out of ans
    img_names = [parse.img_filename(f) for f in ans]
    img_channels = [parse.img_channel(name) for name in img_names]
    for channel in img_channels:
        assert channel in channels_to_keep
Beispiel #4
0
def test_ImageDict_remove_channels():
    channels_to_remove = [4, 5]
    ImgDict = image_prep.ImageDict()
    ans = ImgDict.remove_channels(IMG_URLS, channels_to_remove)
    # parse channel numbers out of ans
    img_names = [parse.img_filename(f) for f in ans]
    img_channels = [parse.img_channel(name) for name in img_names]
    for channel in img_channels:
        assert channel not in channels_to_remove
Beispiel #5
0
def _group_images(df_img):
    """group images by well and site"""
    grouped_list = []
    for _, group in df_img.groupby(["Metadata_well", "Metadata_site"]):
        grouped = list(group["img_paths"])
        channel_nums = [_parse.img_channel(i) for i in grouped]
        # create tuple (path, channel_number) and sort by channel number
        sort_im = sorted(list(zip(grouped, channel_nums)), key=lambda x: x[1])
        # return on the file-paths back from the list of tuples
        grouped_list.append([i[0] for i in sort_im])
    return grouped_list
Beispiel #6
0
def test_ImageDict_sort_channels():
    ImgDict = image_prep.ImageDict()
    # un-sorted channels
    # reverse channels as already sorted
    rev_img_urls = IMG_URLS[::-1]
    ImgDict.add_class("foo", rev_img_urls)
    ImgDict.group_image_channels(order=False)
    order_false_dict = ImgDict.parent_dict
    order_false_vals = order_false_dict["foo"][0]
    order_false_chnnls = [parse.img_channel(val) for val in order_false_vals]
    assert sorted(order_false_chnnls) != order_false_chnnls
    # sort channels
    # need to create new ImageDict class otherwise we get a warning due to
    # adding a new class to already grouped data
    ImgDict2 = image_prep.ImageDict()
    ImgDict2.add_class("bar", IMG_URLS)
    ImgDict2.group_image_channels(order=True)
    order_true_dict = ImgDict2.parent_dict
    order_true_vals = order_true_dict["bar"][0]
    order_true_chnnls = [parse.img_channel(val) for val in order_true_vals]
    assert sorted(order_true_chnnls) == order_true_chnnls
Beispiel #7
0
def create_long_loaddata(img_list):
    """
    create a dataframe of image paths with metadata columns
    """
    just_filenames = [_parse.img_filename(i) for i in img_list]
    df_img = _pd.DataFrame({
        "URL":
        just_filenames,
        "path": [_parse.path(i) for i in img_list],
        "Metadata_platename": [_parse.plate_name(i) for i in img_list],
        "Metadata_well": [_parse.img_well(i) for i in just_filenames],
        "Metadata_site": [_parse.img_site(i) for i in just_filenames],
        "Metadata_channel": [_parse.img_channel(i) for i in just_filenames],
        "Metadata_platenum": [_parse.plate_num(i) for i in img_list]
    })
    return df_img
Beispiel #8
0
def test_img_channel():
    filename = parse.img_filename(EXAMPLE_PATH)
    new_filename = parse.img_filename(NEW_EXAMPLE_PATH)
    assert parse.img_channel(filename) == 1
    assert parse.img_channel(new_filename) == 1