def example_mnist_tap_machine(paysage_path=None,
                              num_epochs=10,
                              show_plot=False):

    num_hidden_units = 256
    batch_size = 100
    learning_rate = schedules.power_law_decay(initial=0.1, coefficient=0.1)

    (_, _, shuffled_filepath) = \
            util.default_paths(paysage_path)

    # set up the reader to get minibatches
    data = batch.HDFBatch(shuffled_filepath,
                          'train/images',
                          batch_size,
                          transform=batch.binarize_color,
                          train_fraction=0.95)

    # set up the model and initialize the parameters
    vis_layer = layers.BernoulliLayer(data.ncols)
    hid_layer = layers.BernoulliLayer(num_hidden_units)

    rbm = model.Model([vis_layer, hid_layer])
    rbm.initialize(data, 'glorot_normal')

    perf = fit.ProgressMonitor(
        data,
        metrics=['ReconstructionError', 'EnergyDistance', 'HeatCapacity'])

    opt = optimizers.Gradient(stepsize=learning_rate,
                              tolerance=1e-4,
                              ascent=True)

    sampler = fit.DrivenSequentialMC.from_batch(rbm, data)

    sgd = fit.SGD(rbm,
                  data,
                  opt,
                  num_epochs,
                  sampler=sampler,
                  method=fit.tap,
                  monitor=perf)

    # fit the model
    print('Training with stochastic gradient ascent using TAP expansion')
    sgd.train()

    util.show_metrics(rbm, perf)
    valid = data.get('validate')
    util.show_reconstructions(rbm,
                              valid,
                              fit,
                              show_plot,
                              n_recon=10,
                              vertical=False)
    util.show_fantasy_particles(rbm, valid, fit, show_plot, n_fantasy=25)
    util.show_weights(rbm, show_plot, n_weights=25)
    # close the HDF5 store
    data.close()
    print("Done")
def example_mnist_tap_machine(paysage_path=None, num_epochs = 10, show_plot=True):

    num_hidden_units = 256
    batch_size = 100
    learning_rate = 0.1

    (_, _, shuffled_filepath) = \
            util.default_paths(paysage_path)

    # set up the reader to get minibatches
    data = batch.Batch(shuffled_filepath,
                       'train/images',
                       batch_size,
                       transform=batch.binarize_color,
                       train_fraction=0.95)

    # set up the model and initialize the parameters
    vis_layer = layers.BernoulliLayer(data.ncols)
    hid_layer = layers.BernoulliLayer(num_hidden_units)

    rbm = tap_machine.TAP_rbm([vis_layer, hid_layer], num_persistent_samples=0,
                              tolerance_EMF=1e-4, max_iters_EMF=25, terms=2)
    rbm.initialize(data, 'glorot_normal')

    perf  = fit.ProgressMonitor(data,
                                metrics=['ReconstructionError',
                                         'EnergyDistance'])

    opt = optimizers.Gradient(stepsize=learning_rate,
                              scheduler=optimizers.PowerLawDecay(0.1),
                              tolerance=1e-4,
                              ascent=True)

    sgd = fit.SGD(rbm, data, opt, num_epochs, method=fit.tap, monitor=perf)

    # fit the model
    print('training with stochastic gradient ascent ')
    sgd.train()

    util.show_metrics(rbm, perf)
    util.show_reconstructions(rbm, data.get('validate'), fit, show_plot)
    util.show_fantasy_particles(rbm, data.get('validate'), fit, show_plot)
    util.show_weights(rbm, show_plot)

    # close the HDF5 store
    data.close()
    print("Done")
Beispiel #3
0
def run(num_epochs=5, show_plot=False):

    num_hidden_units = 256
    batch_size = 100
    learning_rate = schedules.PowerLawDecay(initial=0.1, coefficient=3.0)
    mc_steps = 1

    # set up the reader to get minibatches
    data = util.create_batch(batch_size,
                             train_fraction=0.95,
                             transform=transform)

    # set up the model and initialize the parameters
    vis_layer = layers.BernoulliLayer(data.ncols)
    hid_layer = layers.BernoulliLayer(num_hidden_units)

    rbm = BoltzmannMachine([vis_layer, hid_layer])
    rbm.connections[0].weights.add_penalty(
        {'matrix': pen.l1_adaptive_decay_penalty_2(0.00001)})
    rbm.initialize(data, 'glorot_normal')

    opt = optimizers.Gradient(stepsize=learning_rate, tolerance=1e-4)

    tap = fit.TAP(True, 0.1, 0.01, 25, True, 0.5, 0.001, 0.0)
    sgd = fit.SGD(rbm, data)
    sgd.monitor.generator_metrics.append(TAPLogLikelihood())
    sgd.monitor.generator_metrics.append(TAPFreeEnergy())

    # fit the model
    print('Training with stochastic gradient ascent using TAP expansion')
    sgd.train(opt, num_epochs, method=tap.tap_update, mcsteps=mc_steps)

    util.show_metrics(rbm, sgd.monitor)
    valid = data.get('validate')
    util.show_reconstructions(rbm,
                              valid,
                              show_plot,
                              n_recon=10,
                              vertical=False,
                              num_to_avg=10)
    util.show_fantasy_particles(rbm, valid, show_plot, n_fantasy=5)
    util.show_weights(rbm, show_plot, n_weights=25)
    # close the HDF5 store
    data.close()
    print("Done")
Beispiel #4
0
def test_tap_machine(paysage_path=None):
    num_hidden_units = 10
    batch_size = 50
    num_epochs = 1
    learning_rate = schedules.power_law_decay(initial=0.1, coefficient=0.1)

    if not paysage_path:
        paysage_path = os.path.dirname(
            os.path.dirname(os.path.abspath(__file__)))
    filepath = os.path.join(paysage_path, 'mnist', 'mnist.h5')

    if not os.path.exists(filepath):
        raise IOError(
            "{} does not exist. run mnist/download_mnist.py to fetch from the web"
            .format(filepath))

    shuffled_filepath = os.path.join(paysage_path, 'mnist',
                                     'shuffled_mnist.h5')

    # shuffle the data
    if not os.path.exists(shuffled_filepath):
        shuffler = batch.DataShuffler(filepath, shuffled_filepath, complevel=0)
        shuffler.shuffle()

    # set a seed for the random number generator
    be.set_seed()

    # set up the reader to get minibatches
    data = batch.HDFBatch(shuffled_filepath,
                          'train/images',
                          batch_size,
                          transform=batch.binarize_color,
                          train_fraction=0.1)

    # set up the model and initialize the parameters
    vis_layer = layers.BernoulliLayer(data.ncols)
    hid_layer = layers.BernoulliLayer(num_hidden_units)

    rbm = model.Model([vis_layer, hid_layer])
    rbm.initialize(data)

    # obtain initial estimate of the reconstruction error
    perf = fit.ProgressMonitor(data, metrics=['ReconstructionError'])
    untrained_performance = perf.check_progress(rbm)

    # set up the optimizer and the fit method
    opt = optimizers.Gradient(stepsize=learning_rate,
                              tolerance=1e-3,
                              ascent=True)

    sampler = fit.SequentialMC(rbm)

    solver = fit.SGD(rbm,
                     data,
                     opt,
                     num_epochs,
                     sampler=sampler,
                     method=fit.tap,
                     monitor=perf)

    # fit the model
    print('training with stochastic gradient ascent')
    solver.train()

    # obtain an estimate of the reconstruction error after 1 epoch
    trained_performance = perf.check_progress(rbm)

    assert (trained_performance['ReconstructionError'] <
            untrained_performance['ReconstructionError']), \
    "Reconstruction error did not decrease"

    # close the HDF5 store
    data.close()
Beispiel #5
0
def test_tap_machine(paysage_path=None):
    num_hidden_units = 10
    batch_size = 100
    num_epochs = 5
    learning_rate = schedules.PowerLawDecay(initial=0.1, coefficient=1.0)

    if not paysage_path:
        paysage_path = os.path.dirname(
            os.path.dirname(os.path.abspath(__file__)))
    filepath = os.path.join(paysage_path, 'examples', 'mnist', 'mnist.h5')

    if not os.path.exists(filepath):
        raise IOError(
            "{} does not exist. run mnist/download_mnist.py to fetch from the web"
            .format(filepath))

    shuffled_filepath = os.path.join(paysage_path, 'examples', 'mnist',
                                     'shuffled_mnist.h5')

    # shuffle the data
    if not os.path.exists(shuffled_filepath):
        shuffler = batch.DataShuffler(filepath, shuffled_filepath, complevel=0)
        shuffler.shuffle()

    # set a seed for the random number generator
    be.set_seed()

    # set up the reader to get minibatches
    samples = pre.binarize_color(
        be.float_tensor(
            pandas.read_hdf(shuffled_filepath,
                            key='train/images').as_matrix()[:10000]))
    samples_train, samples_validate = batch.split_tensor(samples, 0.95)
    data = batch.Batch({
        'train':
        batch.InMemoryTable(samples_train, batch_size),
        'validate':
        batch.InMemoryTable(samples_validate, batch_size)
    })

    # set up the model and initialize the parameters
    vis_layer = layers.BernoulliLayer(data.ncols)
    hid_layer = layers.BernoulliLayer(num_hidden_units)

    rbm = BoltzmannMachine([vis_layer, hid_layer])
    rbm.initialize(data)

    # obtain initial estimate of the reconstruction error
    perf = ProgressMonitor(generator_metrics = \
            [ReconstructionError(), TAPLogLikelihood(10), TAPFreeEnergy(10)])
    untrained_performance = perf.epoch_update(data,
                                              rbm,
                                              store=True,
                                              show=False)

    # set up the optimizer and the fit method
    opt = optimizers.Gradient(stepsize=learning_rate, tolerance=1e-5)
    tap = fit.TAP(True, 0.1, 0.01, 25, True, 0.5, 0.001, 0.0)
    solver = fit.SGD(rbm, data)
    solver.monitor.generator_metrics.append(TAPLogLikelihood(10))
    solver.monitor.generator_metrics.append(TAPFreeEnergy(10))

    # fit the model
    print('training with stochastic gradient ascent')
    solver.train(opt, num_epochs, method=tap.tap_update)

    # obtain an estimate of the reconstruction error after 1 epoch
    trained_performance = solver.monitor.memory[-1]

    assert (trained_performance['TAPLogLikelihood'] >
            untrained_performance['TAPLogLikelihood']), \
    "TAP log-likelihood did not increase"
    assert (trained_performance['ReconstructionError'] <
            untrained_performance['ReconstructionError']), \
    "Reconstruction error did not decrease"

    # close the HDF5 store
    data.close()