Beispiel #1
0
def cv(task: Task, variant: Variant, model: nn.Module, config: Dict[str, Any]) -> None:
    """Run cross validation (for hyperparameter selection)."""
    logging.info("Running cross validation for {}, {}".format(task.name, variant.name))
    # get data. cv uses train data only.
    train_data, _ = data.get(task)
    labels, y_np = train_data
    labels_np = np.array(labels)
    x_np = data.features(task, variant, labels)

    # run k-fold cross validation
    folder = model_selection.KFold(n_splits=5, shuffle=True)
    overall_y_hat = np.zeros_like(y_np)
    for i, (train_index, test_index) in enumerate(folder.split(x_np)):
        # logging.info("Fold {}".format(i))
        x_train, x_test = x_np[train_index], x_np[test_index]
        y_train, y_test = y_np[train_index], y_np[test_index]
        labels_train, labels_test = (labels_np[train_index], labels_np[test_index])

        centering = train(model, x_train, y_train, config)
        y_test_hat = test(model, x_test, y_test, centering, config)

        # Uncomment the next line to report on individual folds.
        # metrics.report(y_test_hat, y_test, labels_test, data.TASK_LABELS[task])

        # Save results into overall aggregate.
        overall_y_hat[test_index] = y_test_hat

    # Report on overall results.
    metrics.report(overall_y_hat, y_np, labels, data.TASK_LABELS[task])
Beispiel #2
0
def train_and_test(
    task: Task, variant: Variant, model: nn.Module, config: Dict[str, Any]
) -> Tuple[float, float, Dict[str, float], Dict[int, Dict[str, Any]]]:
    """Run a final train + test run over a task."""
    logging.info("Running train+test for {}, {}".format(task.name, variant.name))
    # get data. cv uses train data only.
    train_data, test_data = data.get(task)

    # train
    labels_train, y_train_np = train_data
    train_label_to_y = {}
    for label, y in zip(labels_train, y_train_np):
        train_label_to_y[label] = y
    labels_train_unique = sorted(list(set(labels_train))) 
    y_train = [train_label_to_y[label] for label in labels_train_unique]
    x_train_np = data.features(task, variant, labels_train_unique)
    centering = train(model, x_train_np, y_train, config)

    # test
    labels_test, y_test_np = test_data
    test_label_to_y = {}
    for label, y in zip(labels_test, y_test_np):
        test_label_to_y[label] = y
    labels_test_unique = sorted(list(set(labels_test))) 
    y_test = [test_label_to_y[label] for label in labels_test_unique]
    x_test_np = data.features(task, variant, labels_test_unique)
    y_test_hat = test(model, x_test_np, y_test, centering, config)
    return metrics.report(y_test_hat, y_test, labels_test_unique, data.TASK_LABELS[task])
Beispiel #3
0
    def __init__(self, task: Task, train: bool, seq_len: int = 20) -> None:
        """
        Args:
            task: task to use
            train: True for train, False for test
            seq_len: sequence length. Set to 2 higher than you need for tokens to
                account for [CLS] and [SEP]
        """
        self.seq_len = seq_len

        # load labels and y data
        train_data, test_data = get(task)
        split_data = train_data if train else test_data
        self.labels, self.y = split_data
        assert len(self.labels) == len(self.y)

        # load X index
        # line_mapping maps from word1/word2 label to sentence index in sentence list.
        self.line_mapping: Dict[str, int] = {}
        task_short = TASK_SHORTHAND[task]
        with open("data/sentences/index.csv", "r") as f:
            reader = csv.DictReader(f)
            for i, row in enumerate(reader):
                if row["task"] == task_short:
                    self.line_mapping[row["uids"]] = i
                    # TODO: check that i lines up and isn't off by one

        with open("data/sentences/sentences.txt", "r") as f:
            self.sentences = [line.strip() for line in f.readlines()]

        # show some samples. This is a really great idiom that huggingface does. Baking
        # little visible sanity checks like this into your code is just... *does gesture
        # where you kiss your fingers and throw them away from your mouth as if
        # describing great food.*
        n_sample = 5
        print("{} Samples:".format(n_sample))
        for i in random.sample(range(len(self.labels)), n_sample):
            label = self.labels[i]
            sentence = self.sentences[self.line_mapping[label]]
            print('- {}: "{}"'.format(label, sentence))

        print("Loading tokenizer...")
        self.tokenizer = BertTokenizer.from_pretrained("bert-large-uncased",
                                                       do_lower_case=True,
                                                       do_basic_tokenize=True)
def train_and_test(
    task: Task, variant: Variant, model: nn.Module, config: Dict[str, Any]
) -> Tuple[float, float, Dict[str, float], Dict[int, Dict[str, Any]]]:
    """Run a final train + test run over a task."""
    logging.info("Running train+test for {}, {}".format(
        task.name, variant.name))
    # get data. cv uses train data only.
    train_data, test_data = data.get(task)

    # train
    labels_train, y_train_np = train_data
    x_train_np = data.features(task, variant, labels_train)
    centering = train(model, x_train_np, y_train_np, config)

    # test
    labels_test, y_test_np = test_data
    x_test_np = data.features(task, variant, labels_test)
    y_test_hat = test(model, x_test_np, y_test_np, centering, config)
    return metrics.report(y_test_hat, y_test_np, labels_test,
                          data.TASK_LABELS[task])
Beispiel #5
0
def main() -> None:
    # settings. (onetime use so no flags.)
    perdatum_path = "data/results/Bert-situated-AP-perdatum.txt"
    task = data.Task.Situated_AffordancesProperties

    # load per-datum output
    with open(perdatum_path, "r") as f:
        perdatum = util.str2np(f.read())

    # get test data: labels and groundtruth y-values
    _, test_data = data.get(task)
    labels, y = test_data
    y = y.squeeze()

    # the per-datum is y_hat == y. we want to recover y_hat so we can pass it back into
    # metrics to easily re-compute everything we need. probably a vectorized op that can
    # do this but oh well.
    y_hat = np.zeros_like(y)
    for i in range(len(y)):
        y_hat[i] = y[i] if perdatum[i] else 1 - y[i]

    # sanity check
    assert len(labels) == len(y_hat)
    assert len(y) == len(y_hat)

    _, _, _, category_cms, _ = metrics.report(y_hat, y, labels,
                                              data.TASK_LABELS[task])

    # write out
    task_short = data.TASK_SHORTHAND[task]
    for i in [0, 1]:
        # e.g., "O" for objects, "P" for properties
        cat_short = task_short[i]
        out_path = "data/results/{}-{}-{}.txt".format("Bert", task_short,
                                                      cat_short)
        print("Writing {} results to {}".format(cat_short, out_path))
        with open(out_path, "w") as f:
            for item, cm in category_cms[i]["per-item"].items():
                f.write("{} {}\n".format(item, util.np2str(cm)))
Beispiel #6
0
def baseline(
    func: Callable[[List[str], np.ndarray, List[str], Tuple[int, ...]],
                   np.ndarray],
    name: str,
    shortname: str,
) -> str:
    # settings
    tasks = [
        (Task.Abstract_ObjectsProperties, ["object", "property"]),
        (Task.Situated_ObjectsProperties, ["object", "property"]),
        (Task.Situated_ObjectsAffordances, ["object", "affordance"]),
        (Task.Situated_AffordancesProperties, ["affordance", "property"]),
    ]
    nums = []
    for task, mf1_labs in tasks:
        logging.info("Running {} baseline for {}".format(name, task.name))
        train_data, test_data = data.get(task)
        labels_train, y_train = train_data
        labels_test, y_test = test_data
        y_test_hat = func(labels_train, y_train, labels_test, y_test.shape)
        _, _, macro_f1s, _, per_datum = metrics.report(y_test_hat, y_test,
                                                       labels_test,
                                                       data.TASK_LABELS[task])
        for mf1_lab in mf1_labs:
            nums.append(macro_f1s[mf1_lab])

        # write full results to file
        path = os.path.join(
            "data",
            "results",
            "{}-{}-perdatum.txt".format(shortname, TASK_MEDIUMHAND[task]),
        )
        with open(path, "w") as f:
            f.write(util.np2str(per_datum) + "\n")

    logging.info("")
    return name + "," + ",".join(["{:.2f}".format(num) for num in nums])
Beispiel #7
0
def create() -> None:
    """This was run once to build the set that was annotated by humans."""
    phase = "round1"
    for task in Task:
        _, _, test = data.get(task)
        labels, _, gold_2d = test
        gold = gold_2d.squeeze()
        index = random.sample(range(len(labels)), 100)
        selected_labels = np.array(labels)[index].tolist()
        selected_gold = gold[index].tolist()

        label_path = os.path.join(
            "data", "human", "{}-{}-labels.txt".format(TASK_MEDIUMHAND[task],
                                                       phase))
        with open(label_path, "w") as f:
            for label in selected_labels:
                f.write(label + "\n")

        gold_path = os.path.join(
            "data", "human", "{}-{}-gold.txt".format(TASK_MEDIUMHAND[task],
                                                     phase))
        with open(gold_path, "w") as f:
            for gold in selected_gold:
                f.write(str(gold) + "\n")
Beispiel #8
0
    def __init__(self, task: Task, train: bool, seq_len: int = 20) -> None:
        self.seq_len = seq_len

        # load labels and y data
        train_data, test_data = get(task)
        split_data = train_data if train else test_data
        self.labels, self.y = split_data
        assert len(self.labels) == len(self.y)

        # load X index
        # line_mapping maps from word1/word2 label to sentence index in sentence list.
        self.line_mapping: Dict[str, int] = {}
        task_short = TASK_SHORTHAND[task]
        with open("data/sentences/index.csv", "r") as f:
            reader = csv.DictReader(f)
            for i, row in enumerate(reader):
                if row["task"] == task_short:
                    self.line_mapping[row["uids"]] = i
                    # TODO: check that i lines up and isn't off by one

        with open("data/sentences/sentences.txt", "r") as f:
            self.sentences = [line.strip() for line in f.readlines()]

        '''
        n_sample = 5
        print("{} Samples:".format(n_sample))
        for i in random.sample(range(len(self.labels)), n_sample):
            label = self.labels[i]
            sentence = self.sentences[self.line_mapping[label]]
            print('- {}: "{}"'.format(label, sentence))
        '''

        print("Loading tokenizer...")
        self.tokenizer = BertTokenizer.from_pretrained(
            "bert-large-uncased", do_lower_case=True, do_basic_tokenize=True
        )
Beispiel #9
0
    def __init__(self,
                 task: Task,
                 image_preprocesser: Any,
                 train: bool,
                 gan_imgs: bool = False,
                 random_imgs: bool = False,
                 text_only: bool = False,
                 dev: bool = True) -> None:
        """
        Args:
            task: task to use
            train: True for train, False for test
        """
        # load labels and y data
        self.text_only = text_only
        train_data, test_data = get(task, dev)
        split_data = train_data if train else test_data
        labels, y_list = split_data
        self.label_to_y = {}
        for label, y in zip(labels, y_list):
            self.label_to_y[label] = y

        # load X index
        # line_mapping maps from word1/word2 label to sentence index in sentence list.
        self.line_mapping = {}
        self.line_mapping_r = {}
        task_short = TASK_SHORTHAND[task]
        with open("data/sentences/index.csv", "r") as f:
            reader = csv.DictReader(f)
            for i, row in enumerate(reader):
                if row["task"] == task_short:
                    self.line_mapping[row["uids"]] = i
                    self.line_mapping_r[i] = row["uids"]
                    # TODO: check that i lines up and isn't off by one

        self.task_idxs = sorted(
            list(set([self.line_mapping[label] for label in labels
                      ])))  #Using a list to keep deterministic ordering
        with open("data/sentences/sentences.txt", "r") as f:
            all_sentences = [line.strip() for line in f.readlines()]
            self.sent_idx_to_dataset_id = {}
            self.sentences = []
            for i, sent in enumerate(all_sentences):
                if i in self.task_idxs:
                    self.sentences.append(sent)
                    self.sent_idx_to_dataset_id[i] = len(self.sentences) - 1

            self.tokenized_sents = clip.tokenize(self.sentences)

        # Load map from sentence index to image names and get list of image names
        if not text_only:
            if gan_imgs:
                self.images = [
                    f"data/situated_sentence_images/{task_idx}.png"
                    for task_idx in self.task_idxs
                ]
            else:
                sent_idx_to_image = pkl.load(
                    open("data/clip/sent_idx_to_image.pkl", "rb"))[task]
                self.images = [
                    "data/mscoco/images/{}".format(sent_idx_to_image[task_idx])
                    for task_idx in self.task_idxs
                ]

            if random_imgs:
                random.shuffle(self.images)

        # show some samples. This is a really great idiom that huggingface does. Baking
        # little visible sanity checks like this into your code is just... *does gesture
        # where you kiss your fingers and throw them away from your mouth as if
        # describing great food.*
        n_sample = 5
        print("{} Samples:".format(n_sample))
        for i in random.sample(range(len(self.task_idxs)), n_sample):
            label = self.line_mapping_r[self.task_idxs[i]]
            sentence = self.sentences[i]
            if not text_only:
                image = self.images[i]
                print('- {}: "{}", "{}"'.format(label, sentence, image))
            else:
                print('- {}: "{}"'.format(label, sentence))

        if not text_only:
            self.image_preprocesser = image_preprocesser