Beispiel #1
0
# get downsampling parameters
noise, target = pcreode.get_thresholds( pca_reduced_data)

# run pCreode
out_graph, out_ids = pcreode.pCreode(
  data = pca_reduced_data,
  density = density,
  noise = noise,
  target = target,
  file_path = "/ti/workspace/.",
  num_runs = params["num_runs"],
  mute=True
)

# score graphs, returns a vector of ranks by similarity
graph ranks = pcreode.pCreode_Scoring(data = pca_reduced_data, file_path = "/ti/workspace/.", num_graphs = params["num_runs"], mute=True)
# select most representative graph
gid = graph_ranks[0]

# extract cell graph
# Wrapper's note: This is actually a cluster graph and a grouping, but none of the objects contain this grouping
# the only thing that is available is a cell graph of only a subset of cells
# so we use this cell graph as milestone network, and then project all cells onto this
analysis = pcreode.Analysis(
  file_path = "/ti/workspace/.",
  graph_id = gid,
  data = pca_reduced_data,
  density = density,
  noise = params["noise"]
)
Beispiel #2
0
dens = pcreode.Density(pca_reduced_data)
density_1 = dens.get_density(radius=1.0)
noise = 8.0
target = 50.0
file_path = './myeloid_w_ids/'

#pdb.set_trace()
out_graph, out_ids = pcreode.pCreode(data=pca_reduced_data,
                                     density=density_1,
                                     noise=noise,
                                     target=target,
                                     file_path=file_path,
                                     num_runs=10)

pcreode.pCreode_Scoring(data=pca_reduced_data,
                        file_path=file_path,
                        num_graphs=10)

seed = 123
gid = 9

#Plot graph
pcreode.plot_save_graph(seed=seed,
                        file_path=file_path,
                        graph_id=gid,
                        data=pca_reduced_data,
                        overlay=data_raw.ELANE,
                        density=density_1,
                        file_out='Elane',
                        upper_range=1.5)
Beispiel #3
0
# get downsampling parameters
noise, target = pcreode.get_thresholds( pca_reduced_data)

# run pCreode
out_graph, out_ids = pcreode.pCreode(
  data = pca_reduced_data,
  density = density,
  noise = noise,
  target = target,
  file_path = "/",
  num_runs = parameters["num_runs"],
  mute = True
)

# score graphs, returns a vector of ranks by similarity
graph_ranks = pcreode.pCreode_Scoring(data = pca_reduced_data, file_path = "/", num_graphs = parameters["num_runs"], mute=True)
# select most representative graph
gid = graph_ranks[0]

# extract cell graph
# Wrapper's note: This is actually a cluster graph and a grouping, but none of the objects contain this grouping
# the only thing that is available is a cell graph of only a subset of cells
# so we use this cell graph as milestone network, and then project all cells onto this
analysis = pcreode.Analysis(
  file_path = "/",
  graph_id = gid,
  data = pca_reduced_data,
  density = density,
  noise = noise
)
Beispiel #4
0
# downsample
downed, downed_ind = pcreode.Down_Sample(pca_reduced_data, density,
                                         params["noise"], params["target"])

# run pCreode
out_graph, out_ids = pcreode.pCreode(data=pca_reduced_data,
                                     density=density,
                                     noise=params["noise"],
                                     target=params["target"],
                                     file_path="/.",
                                     num_runs=params["num_runs"])

# score graphs
# Wrapper's note: There is currently no way of extracting the best graph ordering, even though it is printed. Will select random graph.
pcreode.pCreode_Scoring(data=pca_reduced_data,
                        file_path="/.",
                        num_graphs=params["num_runs"])

gid = np.random.choice(range(params["num_runs"]), 1)[0]

# extract cell graph
# Wrapper's note: This is actually a cluster graph and a grouping, but none of the objects contain this grouping
# the only thing that is available is a cell graph of only a subset of cells
# so we use this cell graph as milestone network, and then project all cells onto this
analysis = pcreode.Analysis(file_path="/.",
                            graph_id=gid,
                            data=pca_reduced_data,
                            density=density,
                            noise=params["noise"])

checkpoints["method_aftermethod"] = time.time()
Beispiel #5
0
                                                file_path,
                                                man_clust=[[0, 1], [50, 51]],
                                                num_runs=num_runs,
                                                mute=True)
# sparse cell types
out_graph, out_ids = pcreode.pCreode_sparse(pca_reduced_data,
                                            density,
                                            noise,
                                            target,
                                            file_path,
                                            num_runs=num_runs,
                                            mute=True)

# score graphs, returns a vector of ranks by similarity
graph_ranks = pcreode.pCreode_Scoring(data=pca_reduced_data,
                                      file_path=file_path,
                                      num_graphs=num_runs,
                                      mute=True)
# select most representative graph
gid = graph_ranks[0]

# extract cell graph
analysis = pcreode.Analysis(file_path=file_path,
                            graph_id=gid,
                            data=pca_reduced_data,
                            density=density,
                            noise=noise)

#analysis.plot_save_graph( seed=0, overlay=expression.iloc[:,1], file_out=file_path, upper_range=3, node_label_size=0)

print "all good"