def _get_printer_details(self):
     communicator = UsbPacketCommunicator(self.usb_queue_length)
     communicator.register_handler(IAmMessage, self._ident_call_back)
     communicator.start()
     communicator.send(IdentifyMessage())
     until = time.time() + 5.0
     while (not self.printer_details and time.time() < until):
         time.sleep(0.1)
     communicator.close()
     details = self.printer_details
     self.printer_details = None
     return details
 def _get_printer_details(self):
     communicator = UsbPacketCommunicator(self.usb_queue_length)
     communicator.register_handler(IAmMessage, self._ident_call_back)
     communicator.start()
     communicator.send(IdentifyMessage())
     until = time.time() + 5.0
     while (not self.printer_details and time.time() < until):
         time.sleep(0.1)
     communicator.close()
     details = self.printer_details
     self.printer_details = None
     return details
Beispiel #3
0
 def _get_printer_details(self):
     communicator = UsbPacketCommunicator(self.usb_queue_length)
     communicator.register_handler(IAmMessage, self._ident_call_back)
     communicator.start()
     communicator.send(IdentifyMessage())
     until = time.time() + 5.0
     while (not self.printer_details and time.time() < until):
         time.sleep(0.1)
     communicator.close()
     if not self.printer_details:
         raise MissingPrinterException()
     details = self.printer_details
     self.printer_details = None
     logger.info("Loaded printer \n{}".format(str(details.sn)))
     return details
 def _get_printer_details(self):
     communicator = UsbPacketCommunicator(self.usb_queue_length)
     communicator.register_handler(IAmMessage, self._ident_call_back)
     communicator.start()
     communicator.send(IdentifyMessage())
     until = time.time() + 5.0
     while (not self.printer_details and time.time() < until):
         time.sleep(0.1)
     communicator.close()
     if not self.printer_details:
         raise MissingPrinterException()
     details = self.printer_details
     self.printer_details = None
     logger.info("Loaded printer \n{}".format(str(details.sn)))
     return details
Beispiel #5
0
class UsbTestTerminal(object):
    VREF_CAL_POS = 0
    TEMP30_CAL_POS = 1
    TEMP110_CAL_POS = 2
    ADC_KEY_POS = 3
    ADC_PA3_POS = 4
    ADC_TEMP_POS = 5
    ADC_VREF_POS = 6

    def __init__(self, verbose=False):
        self._verbose = verbose

        self._drips = 0
        self._serial = None
        self._swrev = None
        self._hwrev = None
        self._adcNum = []
        self._adcVal = []
        self._dataRate = None
        self._adcCals = []
        self._move = [0, 0, 0]

        self._usb = UsbPacketCommunicator(10)
        self._usb.register_handler(IAmMessage, self.iAmHandler)
        self._usb.register_handler(DripRecordedMessage, self.dripHandler)
        self._usb.register_handler(ReturnAdcValMessage, self.adcHandler)
        self._usb.start()
        if verbose:
            print "Started usb terminal"
        time.sleep(0.1)

    def usbClose(self):
        self._usb.close()

    def laserOff(self):
        move = self._move
        self._usb.send(MoveMessage(move[0], move[1], 0))

    def laserOn(self):
        move = self._move
        self._usb.send(MoveMessage(move[0], move[1], 255))

    def move(self, x, y, laserPower=0):
        self._move = [x, y, laserPower]
        self._usb.send(MoveMessage(x, y, laserPower))

    def setDrips(self, dripCount=0):
        self._usb.send(SetDripCountMessage(dripCount))

    def identify(self):
        self._usb.send(IdentifyMessage())

    def enterBootloader(self, i_am_sure=None):
        if i_am_sure == (0xDEADBEEF):
            self._usb.send(EnterBootloaderMessage())
            if (self._verbose):
                print "Bootloadereded"
        elif (self._verbose):
            print "i_am_sure not loaded with the correct value"
            print "Note: This may lock your peachy into the bootloader"
            print "      if you have old firmware on your board"

    #A non-ideal push/pop queue interface.
    #Doesn't account for mis-matching - May be worth clearing on each request?
    def popAdc(self, timeout=0.1):
        start = time.time()
        timeout = start + timeout  #in seconds
        while (time.time() < timeout):  #wait for data being available or
            if (len(self._adcVal) != 0):
                tmp = [self._adcNum[0], self._adcVal[0]]
                del self._adcNum[0]
                del self._adcVal[0]
                return tmp
            else:
                time.sleep(0.01)

    def clearAdcQueues(self):
        self._adcNum = []
        self._adcVal = []

    def getAdcCalibrations(self):
        if len(self._adcCals) != 3:
            [adcNum, adcVrefCal] = self.getAdcVal(self.VREF_CAL_POS)
            [adcNum, adcTemp30] = self.getAdcVal(self.TEMP30_CAL_POS)
            [adcNum, adcTemp110] = self.getAdcVal(self.TEMP110_CAL_POS)
            self._adcCals = [adcVrefCal, adcTemp30, adcTemp110]

    def getTemperature(self):

        self.getAdcCalibrations()

        #Return actual Temperature in C
        #Formulas taken from STM32F0 datasheet page 252
        adcVrefCal = self._adcCals[self.VREF_CAL_POS]
        adcTemp30 = self._adcCals[self.TEMP30_CAL_POS]
        adcTemp110 = self._adcCals[self.TEMP110_CAL_POS]

        #Get the current Vref and Temperature each time
        [adcNum, adcTemperature] = self.getAdcVal(self.ADC_TEMP_POS)
        [adcNum, adcVref] = self.getAdcVal(self.ADC_VREF_POS)

        vrefCompensation = 1.0 * adcVrefCal / adcVref
        temperature = adcTemperature * vrefCompensation - adcTemp30
        temperature = temperature * (110 - 30) / (adcTemp110 - adcTemp30)
        temperature = temperature + 30

        if (self._verbose):
            print('Temperatures Value={0} Celcius={1}'.format(
                adcTemperature, temperature))

        return temperature

    def getSupplyVoltage(self):

        self.getAdcCalibrations()
        adcVrefCal = self._adcCals[self.VREF_CAL_POS]
        [adcNum, adcVref] = self.getAdcVal(self.ADC_VREF_POS)

        vrefCompensation = 1.0 * adcVrefCal / adcVref

        #calibrated at 3.3V always
        supplyVoltage = 3.3 * vrefCompensation

        if (self._verbose):
            print('Voltage {0}, Value {1}'.format(supplyVoltage, adcVref))

        return supplyVoltage

    def getAdcKeyVal(self):
        return self.getAdcVal(self.ADC_KEY_POS)

    def getAdcVal(self, adcNum):
        '''ADC NUMBERS:
        0 - Vref Calibration Factor
        1 - 30C temperature calibration
        2 - 110C temperature calibration
        3 - ADC key (PA2)
        4 - Pin (PA3)
        5 - Temperature
        6 - Vref (3.3V volts)
        '''

        self._adcNum.append(adcNum)
        self._usb.send(GetAdcValMessage(adcNum))
        if self._verbose:
            print('adcNum: {0}'.format(adcNum))
        return self.popAdc()

    def adcHandler(self, message):
        if (len(self._adcNum) > len(self._adcVal)):
            self._adcVal.append(message.adcVal)
            if self._verbose:
                print('adcNum: {0} adcVal: {1}'.format(self._adcNum[-1],
                                                       self._adcVal[-1]))
        else:
            self.clearAdcQueues()

    def dripHandler(self, message):
        self._drips = message.drips
        if self._verbose:
            print('Recieved drip: {0}'.format(message.drips))

    def iAmHandler(self, message):
        self._serial = message.sn
        self._swrev = message.swrev
        self._hwrev = message.hwrev
        self._dataRate = message.dataRate
        if self._verbose:
            print('Serial number: {0}'.format(message.sn))
            print('SW rev number: {0}'.format(message.swrev))
            print('HW rev number: {0}'.format(message.hwrev))
            print('Data Rate:     {0}'.format(message.dataRate))
class UsbTestTerminal(object):
    VREF_CAL_POS = 0
    TEMP30_CAL_POS = 1
    TEMP110_CAL_POS = 2
    ADC_KEY_POS = 3
    ADC_PA3_POS = 4
    ADC_TEMP_POS = 5
    ADC_VREF_POS = 6

    def __init__(self,verbose=False):
        self._verbose=verbose

        self._drips=0
        self._serial=None
        self._swrev=None
        self._hwrev=None
        self._adcNum=[]
        self._adcVal=[]
        self._dataRate=None
        self._adcCals=[]
        self._move=[0,0,0]

        self._usb = UsbPacketCommunicator(10)
        self._usb.register_handler(IAmMessage, self.iAmHandler)
        self._usb.register_handler(DripRecordedMessage, self.dripHandler)
        self._usb.register_handler(ReturnAdcValMessage, self.adcHandler)
        self._usb.start()
        if verbose:
            print "Started usb terminal"
        time.sleep(0.1)

    def usbClose(self):
        self._usb.close()

    def laserOff(self):
        move=self._move
        self._usb.send(MoveMessage(move[0],move[1],0))

    def laserOn(self):
        move=self._move
        self._usb.send(MoveMessage(move[0],move[1],255))

    def move(self,x,y,laserPower=0):
        self._move=[x,y,laserPower]
        self._usb.send(MoveMessage(x,y,laserPower))

    def setDrips(self,dripCount=0):
        self._usb.send(SetDripCountMessage(dripCount))

    def identify(self):
        self._usb.send(IdentifyMessage())

    def enterBootloader(self,i_am_sure=None):
        if i_am_sure==(0xDEADBEEF):
            self._usb.send(EnterBootloaderMessage())
            if (self._verbose):
                print "Bootloadereded"
        elif (self._verbose):
            print "i_am_sure not loaded with the correct value"
            print "Note: This may lock your peachy into the bootloader"
            print "      if you have old firmware on your board"

    #A non-ideal push/pop queue interface.
    #Doesn't account for mis-matching - May be worth clearing on each request?
    def popAdc(self,timeout=0.1):
        start=time.time()
        timeout=start+timeout #in seconds
        while(time.time()<timeout): #wait for data being available or 
            if (len(self._adcVal) != 0):
                tmp=[self._adcNum[0],self._adcVal[0]]
                del self._adcNum[0]
                del self._adcVal[0]
                return tmp
            else:
                time.sleep(0.01)

    def clearAdcQueues(self):
        self._adcNum=[]
        self._adcVal=[]

    def getAdcCalibrations(self):
        if len(self._adcCals)!=3:
            [adcNum,adcVrefCal] = self.getAdcVal(self.VREF_CAL_POS)
            [adcNum,adcTemp30] = self.getAdcVal(self.TEMP30_CAL_POS)
            [adcNum,adcTemp110] = self.getAdcVal(self.TEMP110_CAL_POS)
            self._adcCals = [adcVrefCal,adcTemp30,adcTemp110]

    def getTemperature(self):

        self.getAdcCalibrations()

        #Return actual Temperature in C
        #Formulas taken from STM32F0 datasheet page 252
        adcVrefCal = self._adcCals[self.VREF_CAL_POS]
        adcTemp30 = self._adcCals[self.TEMP30_CAL_POS]
        adcTemp110 = self._adcCals[self.TEMP110_CAL_POS]

        #Get the current Vref and Temperature each time
        [adcNum,adcTemperature]=self.getAdcVal(self.ADC_TEMP_POS)
        [adcNum,adcVref]=self.getAdcVal(self.ADC_VREF_POS)

        vrefCompensation = 1.0*adcVrefCal/adcVref
        temperature = adcTemperature*vrefCompensation-adcTemp30
        temperature = temperature*(110-30)/(adcTemp110-adcTemp30)
        temperature = temperature + 30

        if (self._verbose):
            print ('Temperatures Value={0} Celcius={1}'.format(adcTemperature,temperature))

        return temperature

    def getSupplyVoltage(self):

        self.getAdcCalibrations()
        adcVrefCal=self._adcCals[self.VREF_CAL_POS]
        [adcNum,adcVref]=self.getAdcVal(self.ADC_VREF_POS)

        vrefCompensation = 1.0*adcVrefCal/adcVref
        
        #calibrated at 3.3V always
        supplyVoltage = 3.3*vrefCompensation

        if (self._verbose):
            print ('Voltage {0}, Value {1}'.format(supplyVoltage,adcVref))

        return supplyVoltage

    def getAdcKeyVal(self):
        return self.getAdcVal(self.ADC_KEY_POS)

    def getAdcVal(self,adcNum):
        '''ADC NUMBERS:
        0 - Vref Calibration Factor
        1 - 30C temperature calibration
        2 - 110C temperature calibration
        3 - ADC key (PA2)
        4 - Pin (PA3)
        5 - Temperature
        6 - Vref (3.3V volts)
        '''

        self._adcNum.append(adcNum)
        self._usb.send(GetAdcValMessage(adcNum))
        if self._verbose:
            print('adcNum: {0}'.format(adcNum))
        return self.popAdc()

    def adcHandler(self,message):
        if (len(self._adcNum) > len(self._adcVal)):
            self._adcVal.append(message.adcVal)
            if self._verbose:
                print('adcNum: {0} adcVal: {1}'.format(self._adcNum[-1], self._adcVal[-1]))
        else:
            self.clearAdcQueues()

    def dripHandler(self, message):
        self._drips=message.drips
        if self._verbose:
            print('Recieved drip: {0}'.format(message.drips))

    def iAmHandler(self, message):
        self._serial=message.sn
        self._swrev=message.swrev
        self._hwrev=message.hwrev
        self._dataRate=message.dataRate
        if self._verbose:
            print('Serial number: {0}'.format(message.sn))
            print('SW rev number: {0}'.format(message.swrev))
            print('HW rev number: {0}'.format(message.hwrev))
            print('Data Rate:     {0}'.format(message.dataRate))
Beispiel #7
0
class CalibrationAPI(object):
    '''The calibration API proivides the tools required to setup a Peacy Printer'''

    def __init__(self, configuration_manager):
        logger.info("Calibartion API Startup")
        self._configuration_manager = configuration_manager
        self._configuration = self._configuration_manager.load()

        self._point_generator = SinglePointGenerator()
        self._blink_generator = BlinkGenerator()
        self._orientaiton_generator = OrientationGenerator()
        self._alignment_generator = CalibrationLineGenerator()
        self._scale_generator = ScaleGenerator(speed=2.0, radius=1.0)

        self._test_patterns = {
            'Hilbert Space Filling Curve': HilbertGenerator(),
            'Square': SquareGenerator(),
            'Circle': CircleGenerator(),
            'Spiral': SpiralGenerator(),
            'Memory Hourglass': MemoryHourglassGenerator(),
            'Damping Test': DampingTestGenerator(),
            'NESW': NESWGenerator(),
            'Twitch': TwitchGenerator(),
            }

        self._current_generator = self._point_generator

        self._laser_control = LaserControl(self._configuration.cure_rate.override_laser_power_amount)
        transformer = TuningTransformer(scale=self._configuration.calibration.max_deflection)
        self._controller = None
        logger.debug("Setting up audiowriter")

        self._current_generator = self._point_generator

        self._state = MachineState()
        self._status = MachineStatus()

        self._communicator = UsbPacketCommunicator(self._configuration.circut.calibration_queue_length)
        self._communicator.start()
        self._disseminator = MicroDisseminator(
            self._laser_control,
            self._communicator,
            self._configuration.circut.data_rate
            )

        self._path_to_points = PathToPoints(
            self._disseminator.samples_per_second,
            transformer,
            self._configuration.options.laser_thickness_mm
            )

        post_fire_delay_speed = None
        slew_delay_speed = None
        if self._configuration.options.post_fire_delay:
            post_fire_delay_speed = self._configuration.options.laser_thickness_mm / (float(self._configuration.options.post_fire_delay) / 1000.0)
        if self._configuration.options.slew_delay:
            slew_delay_speed = self._configuration.options.laser_thickness_mm / (float(self._configuration.options.slew_delay) / 1000.0)

        self._writer = LayerWriter(
            self._disseminator,
            self._path_to_points,
            self._laser_control,
            self._state,
            post_fire_delay_speed=post_fire_delay_speed,
            slew_delay_speed=slew_delay_speed
            )

        self._layer_processing = LayerProcessing(
            self._writer,
            self._state,
            self._status,
            )

        self._controller = Controller(
            self._writer,
            self._layer_processing,
            self._current_generator,
            self._status,
            abort_on_error=False,
            )

        self.make_pattern_fit()
        self._controller.start()

    def subscribe_to_status(self, callback):
        '''Provides ability to subscribe to a printer safety status message (PrinterStatusMessage)'''

        self._communicator.register_handler(PrinterStatusMessage, callback)

    def set_print_area(self, width, height, depth):
        '''Set the print area (width, height, depth) in mm'''

        self._configuration.calibration.print_area_x = width
        self._configuration.calibration.print_area_y = height
        self._configuration.calibration.print_area_z = depth
        self._save()

    def get_print_area(self):
        '''Gets the print area (width, height, depth) in mm'''

        return (self._configuration.calibration.print_area_x, self._configuration.calibration.print_area_y, self._configuration.calibration.print_area_z)

    def set_orientation(self, x_flip, yflip, swap_axis):
        '''Allows for compensation of coil hook up by flipping and reversing axis'''

        self._configuration.calibration.flip_x_axis = x_flip
        self._configuration.calibration.flip_y_axis = yflip
        self._configuration.calibration.swap_axis = swap_axis
        self._save()

    def get_orientation(self):
        '''Gets the compensation for coil hook up returns tuple3 of booleans (flip x axis, flip y axis, swap axis) '''

        return (self._configuration.calibration.flip_x_axis, self._configuration.calibration.flip_y_axis, self._configuration.calibration.swap_axis)

    def show_point(self, xyz=[0.5, 0.5, 0.5]):
        '''Used to show a single point with no calibration applied'''

        # logger.info('Showing point')
        x, y, z = xyz
        self._point_generator.xy = [x, y]
        if (self._current_generator != self._point_generator):
            self._unapply_calibration()
            self._update_generator(self._point_generator)

    def show_blink(self, xyz=[0.5, 0.5, 0.0]):
        '''Used to show a blinking point with no calibration applied used for aligning on and off laser posisition'''

        logger.info('Showing blink')
        x, y, z = xyz
        self._blink_generator.xy = [x, y]
        if (self._current_generator != self._blink_generator):
            self._unapply_calibration()
            self._update_generator(self._blink_generator)

    def show_orientation(self):
        '''Used to show pattern with no calibration applied used for determining orientation'''

        logger.info('Showing Orientation')
        if (self._current_generator != self._orientaiton_generator):
            self._unapply_calibration()
            self._update_generator(self._orientaiton_generator)

    def show_line(self):
        '''Used to show a single line on one axis used to line up calibration grid'''

        logger.info('Showing line')
        self._unapply_calibration()
        self._update_generator(self._alignment_generator)

    def show_test_pattern(self, pattern):
        '''Used to show a test pattern with calibration applied'''

        logger.info('Showing test pattern %s' % pattern)
        if pattern in self._test_patterns.keys():
            self._apply_calibration()
            self._update_generator(self._test_patterns[pattern])
        else:
            logger.error('Pattern: %s does not exist' % pattern)
            raise Exception('Pattern: %s does not exist' % pattern)

    def show_scale(self):
        '''Shows the scale square'''

        logger.info('Showing scale')
        self._unapply_calibration()
        self._update_generator(self._scale_generator)

    def get_max_deflection(self):
        '''Gets the maximum allowable deflection of the mirrors as percentage'''

        return self._configuration.calibration.max_deflection
    
    def set_max_deflection(self, deflection):
        '''Sets the maximum allowable deflection of the mirrors as percentage'''

        self._configuration.calibration.max_deflection = deflection
        self._unapply_calibration()
        self._save()

    def set_laser_off_override(self, state):
        '''Allows user so force the laser on'''

        self._controller.laser_off_override = state

    def set_test_pattern_speed(self, speed):
        '''Changes the speed at which the test pattern is drawn in mm/sec'''

        [pattern.set_speed(speed) for pattern in self._test_patterns.values()]

    def set_test_pattern_current_height(self, current_height):
        '''Changes the height at which the test pattern is drawn in mm'''

        [pattern.set_current_height(current_height) for pattern in self._test_patterns.values()]

    def get_test_patterns(self):
        '''returns a list of test patterns'''

        return self._test_patterns.keys()

    def current_calibration(self):
        '''Returns the current calibration for the printer'''

        return self._configuration.calibration

    def save_points(self, height, lower_points, upper_points):
        '''deprecated use set_lower_points and set_upper_points, set_height'''

        self.set_lower_points(lower_points)
        self.set_upper_points(upper_points)
        self.set_height(height)

    def get_lower_points(self):
        '''Gets the lower calibration points'''

        return self._configuration.calibration.lower_points

    def set_lower_points(self, lower_points):
        '''Set and saves the suppliled lower calibration'''

        self._configuration.calibration.lower_points = lower_points
        self._save()

    def get_upper_points(self):
        '''Gets the upper calibration points'''

        return self._configuration.calibration.upper_points

    def set_upper_points(self, upper_points):
        '''Set and saves the suppliled upper calibration'''

        self._configuration.calibration.upper_points = upper_points
        self._save()

    def get_height(self):
        '''Gets the calibration height'''

        return self._configuration.calibration.height

    def set_height(self, height):
        '''Set and saves the upper calibration height'''

        self._configuration.calibration.height = height
        self._save()

    def _save(self):
        self._configuration_manager.save(self._configuration)
        self.make_pattern_fit()

    # deprecated
    def make_pattern_fit(self):
        for pattern in self._test_patterns.values():
            pattern.set_radius(self.get_largest_object_radius())

    def close(self):
        '''Must be called before shutting down applications'''

        self._controller.close()

    def _update_generator(self, generator):
        self._current_generator = generator
        self._controller.change_generator(self._current_generator)

    def _apply_calibration(self):
        self._path_to_points.set_transformer(
            HomogenousTransformer(
                self._configuration.calibration.max_deflection,
                self._configuration.calibration.height,
                self._configuration.calibration.lower_points,
                self._configuration.calibration.upper_points
                )
            )

    def _unapply_calibration(self):
        self._path_to_points.set_transformer(
            TuningTransformer(scale=self._configuration.calibration.max_deflection))

    def _validate_points(self, points):
        if (len(points) != 4):
            return False
        return True

    def get_largest_object_radius(self):
        '''Based on current calibrations_gets_maximum_size_of_object at the base layer'''

        lowest = None
        for (x, y) in self._configuration.calibration.lower_points.values():
            if not lowest or abs(x) < lowest:
                lowest = abs(x)
            if abs(y) < lowest:
                lowest = abs(y)
        logger.info("Calulated max radius of object as: %s mm" % lowest)
        return lowest

    def stop(self):
        '''Stops the calibaration interactivity'''

        self._controller.stop()