def __init__(self, data_, network_, prior_=None, localscore_cache=None, **options): """Create a network evaluator for use with missing values. This evaluator uses a Gibb's sampler for sampling over the space of possible completions for the missing values. For more information about Gibb's sampling, consult: 1. http://en.wikipedia.org/wiki/Gibbs_sampling 2. D. Heckerman. A Tutorial on Learning with Bayesian Networks. Microsoft Technical Report MSR-TR-95-06, 1995. p.21-22. Any config param for 'gibbs' can be passed in via options. Use just the option part of the parameter name. """ super(MissingDataNetworkEvaluator, self).__init__(data_, network_, prior_) self._localscore = None # no cache w/ missing data config.setparams(self, options)
def __init__(self, **options): """Create a XGridController. Any config param for 'xgrid' can be passed in via options. Use just the option part of the parameter name. """ config.setparams(self, options)
def __init__(self, data_=None, prior_=None, **options): """Create a Simulated Aneaaling learner. For more information about Simulated Annealing algorithms, consult: 1. http://en.wikipedia.org/wiki/Simulated_annealing 2. D. Heckerman. A Tutorial on Learning with Bayesian Networks. Microsoft Technical Report MSR-TR-95-06, 1995. p.35-36. Any config param for 'simanneal' can be passed in via options. Use just the option part of the parameter name. """ super(SimulatedAnnealingLearner,self).__init__(data_, prior_) config.setparams(self, options) if not isinstance(self.seed, network.Network): self.seed = network.Network(self.data.variables, self.seed)
def __init__(self, **options): config.setparams(self, options) self.ec2 = ec2ipy1.EC2Cluster(self.config) self.start()