def read_fixed_points(datadir = 'data/', fileName = 'fixed_points.dat', hm = 1):
    """
    Reads the fixed points files.

    call signature::

      fixed = read_fixed_points(datadir = 'data/', fileName = 'fixed_points.dat', hm = 1)

    Reads from the fixed points files. Returns the fixed points positions.

    Keyword arguments:

      *datadir*:
        Data directory.

      *fileName*:
        Name of the fixed points file.

      *hm*:
        Header multiplication factor in case Fortran's binary data writes extra large
        header. For most cases hm = 1 is sufficient. For the cluster in St Andrews use hm = 2.
    """


    # read the cpu structure
    dim = pc.read_dim(datadir = datadir)
    if (dim.nprocz > 1):
        print("error: number of cores in z-direction > 1")

    data = []

    # read the data
    fixed_file = open(datadir+fileName, 'rb')
    tmp = fixed_file.read(4*hm)

    data = pc.fixed_struct()
    eof = 0
    # length of longest array of fixed points
    fixedMax = 0
    if tmp == '':
        eof = 1
    while (eof == 0):
        data.t.append(struct.unpack("<"+str(hm+1)+"f", fixed_file.read(4*(hm+1)))[0])
        n_fixed = int(struct.unpack("<"+str(2*hm+1)+"f", fixed_file.read(4*(2*hm+1)))[1+int(hm/2)])

        x = list(np.zeros(n_fixed))
        y = list(np.zeros(n_fixed))
        q = list(np.zeros(n_fixed))
        for j in range(n_fixed):
            x[j] = struct.unpack("<"+str(hm+1)+"f", fixed_file.read(4*(hm+1)))[-1]
            y[j] = struct.unpack("<f", fixed_file.read(4))[0]
            q[j] = struct.unpack("<"+str(hm+1)+"f", fixed_file.read(4*(hm+1)))[0]
        data.x.append(x)
        data.y.append(y)
        data.q.append(q)
        data.fidx.append(n_fixed)

        tmp = fixed_file.read(4*hm)
        if tmp == '':
            eof = 1

        if fixedMax < len(x):
            fixedMax = len(x)

    fixed_file.close()

    # add NaN to fill up the times with smaller number of fixed points
    fixed = pc.fixed_struct()
    for i in range(len(data.t)):
        annex = list(np.zeros(fixedMax - len(data.x[i])) + np.nan)
        fixed.t.append(data.t[i])
        fixed.x.append(data.x[i] + annex)
        fixed.y.append(data.y[i] + annex)
        fixed.q.append(data.q[i] + annex)
        fixed.fidx.append(data.fidx[i])

    fixed.t = np.array(fixed.t)
    fixed.x = np.array(fixed.x)
    fixed.y = np.array(fixed.y)
    fixed.q = np.array(fixed.q)
    fixed.fidx = np.array(fixed.fidx)

    return fixed
Beispiel #2
0
def read_fixed_points(datadir='data/', fileName='fixed_points.dat', hm=1):
    """
    Reads the fixed points files.

    call signature::

      fixed = read_fixed_points(datadir = 'data/', fileName = 'fixed_points.dat', hm = 1)

    Reads from the fixed points files. Returns the fixed points positions.

    Keyword arguments:

      *datadir*:
        Data directory.

      *fileName*:
        Name of the fixed points file.

      *hm*:
        Header multiplication factor in case Fortran's binary data writes extra large
        header. For most cases hm = 1 is sufficient. For the cluster in St Andrews use hm = 2.
    """

    # read the cpu structure
    dim = pc.read_dim(datadir=datadir)
    if (dim.nprocz > 1):
        print "error: number of cores in z-direction > 1"

    data = []

    # read the data
    fixed_file = open(datadir + fileName, 'rb')
    tmp = fixed_file.read(4 * hm)

    data = pc.fixed_struct()
    eof = 0
    # length of longest array of fixed points
    fixedMax = 0
    if tmp == '':
        eof = 1
    while (eof == 0):
        data.t.append(
            struct.unpack("<" + str(hm + 1) + "f",
                          fixed_file.read(4 * (hm + 1)))[0])
        n_fixed = int(
            struct.unpack("<" + str(2 * hm + 1) + "f",
                          fixed_file.read(4 * (2 * hm + 1)))[1 + hm / 2])

        x = list(np.zeros(n_fixed))
        y = list(np.zeros(n_fixed))
        q = list(np.zeros(n_fixed))
        for j in range(n_fixed):
            x[j] = struct.unpack("<" + str(hm + 1) + "f",
                                 fixed_file.read(4 * (hm + 1)))[-1]
            y[j] = struct.unpack("<f", fixed_file.read(4))[0]
            q[j] = struct.unpack("<" + str(hm + 1) + "f",
                                 fixed_file.read(4 * (hm + 1)))[0]
        data.x.append(x)
        data.y.append(y)
        data.q.append(q)
        data.fidx.append(n_fixed)

        tmp = fixed_file.read(4 * hm)
        if tmp == '':
            eof = 1

        if fixedMax < len(x):
            fixedMax = len(x)

    fixed_file.close()

    # add NaN to fill up the times with smaller number of fixed points
    fixed = pc.fixed_struct()
    for i in range(len(data.t)):
        annex = list(np.zeros(fixedMax - len(data.x[i])) + np.nan)
        fixed.t.append(data.t[i])
        fixed.x.append(data.x[i] + annex)
        fixed.y.append(data.y[i] + annex)
        fixed.q.append(data.q[i] + annex)
        fixed.fidx.append(data.fidx[i])

    fixed.t = np.array(fixed.t)
    fixed.x = np.array(fixed.x)
    fixed.y = np.array(fixed.y)
    fixed.q = np.array(fixed.q)
    fixed.fidx = np.array(fixed.fidx)

    return fixed
def fixed_points(datadir = 'data/', fileName = 'fixed_points_post.dat', varfile = 'VAR0', ti = -1, tf = -1,
                 traceField = 'bb', hMin = 2e-3, hMax = 2e4, lMax = 500, tol = 1e-2,
                 interpolation = 'weighted', trace_sub = 1, integration = 'simple', nproc = 1):
    """
    Find the fixed points.

    call signature::

      fixed = fixed_points(datadir = 'data/', fileName = 'fixed_points_post.dat', varfile = 'VAR0', ti = -1, tf = -1,
                 traceField = 'bb', hMin = 2e-3, hMax = 2e4, lMax = 500, tol = 1e-2,
                 interpolation = 'weighted', trace_sub = 1, integration = 'simple', nproc = 1)

    Finds the fixed points. Returns the fixed points positions.

    Keyword arguments:

      *datadir*:
        Data directory.

      *fileName*:
        Name of the fixed points file.

     *varfile*:
       Varfile to be read.
       
      *ti*:
        Initial VAR file index for tracer time sequences. Overrides 'varfile'.
        
      *tf*:
        Final VAR file index for tracer time sequences. Overrides 'varfile'.        

     *traceField*:
       Vector field used for the streamline tracing.
        
     *hMin*:
       Minimum step length for and underflow to occur.
       
     *hMax*:
       Parameter for the initial step length.
       
     *lMax*:
       Maximum length of the streamline. Integration will stop if l >= lMax.
       
     *tol*:
       Tolerance for each integration step. Reduces the step length if error >= tol.
     
     *interpolation*:
       Interpolation of the vector field.
       'mean': takes the mean of the adjacent grid point.
       'weighted': weights the adjacent grid points according to their distance.
       
     *trace_sub*:
       Number of sub-grid cells for the seeds for the initial mapping.
       
     *intQ*:
       Quantities to be integrated along the streamlines.
     
      *integration*:
        Integration method.
        'simple': low order method.
        'RK6': Runge-Kutta 6th order.
       
     *nproc*:
       Number of cores for multi core computation.
    """


    class data_struct:
        def __init__(self):
            self.t = []
            self.fidx = [] # number of fixed points at this time
            self.x = []
            self.y = []
            self.q = []
    
    
    # Computes rotation along one edge.
    def edge(vv, p, sx, sy, diff1, diff2, phiMin, rec, hMin = hMin, hMax = hMax,
             lMax = lMax, tol = tol, interpolation = interpolation, integration = integration):
        dtot = m.atan2(diff1[0]*diff2[1] - diff2[0]*diff1[1], diff1[0]*diff2[0] + diff1[1]*diff2[1])
        if ((abs(dtot) > phiMin) and (rec < 4)):
            xm = 0.5*(sx[0]+sx[1])
            ym = 0.5*(sy[0]+sy[1])
            # trace intermediate field line
            s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,
                          interpolation = interpolation, integration = integration, xx = np.array([xm, ym, p.Oz]))
            tracer = np.concatenate((s.tracers[0,0:2], s.tracers[s.sl-1,:], np.reshape(s.l,(1))))
            # discard any streamline which does not converge or hits the boundary
            if ((tracer[5] >= lMax) or (tracer[4] < p.Oz+p.Lz-p.dz)):
                dtot = 0.
            else:
                diffm = np.array([tracer[2] - tracer[0], tracer[3] - tracer[1]])
                if (sum(diffm**2) != 0):
                    diffm = diffm / np.sqrt(sum(diffm**2))
                dtot = edge(vv, p, [sx[0], xm], [sy[0], ym], diff1, diffm, phiMin, rec+1,
                             hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)+ \
                       edge(vv, p, [xm, sx[1]], [ym, sy[1]], diffm, diff2, phiMin, rec+1,
                             hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)        
        return dtot
        
    # Finds the Poincare index of this grid cell.
    def pIndex(vv, p, sx, sy, diff, phiMin, hMin = hMin, hMax = hMax,
             lMax = lMax, tol = tol, interpolation = interpolation, integration = integration):
        poincare = 0
        poincare += edge(vv, p, [sx[0], sx[1]], [sy[0], sy[0]], diff[0,:], diff[1,:], phiMin, 0,
                         hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
        poincare += edge(vv, p, [sx[1], sx[1]], [sy[0], sy[1]], diff[1,:], diff[2,:], phiMin, 0,
                         hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
        poincare += edge(vv, p, [sx[1], sx[0]], [sy[1], sy[1]], diff[2,:], diff[3,:], phiMin, 0,
                         hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
        poincare += edge(vv, p, [sx[0], sx[0]], [sy[1], sy[0]], diff[3,:], diff[0,:], phiMin, 0,
                         hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
        return poincare     
           
    # fixed point finder for a subset of the domain
    def subFixed(queue, ix0, iy0, vv, p, tracers, iproc, hMin = 2e-3, hMax = 2e4, lMax = 500,
                 tol = 1e-2, interpolation = 'weighted', integration = 'simple'):
        diff = np.zeros((4,2))
        phiMin = np.pi/8.
        x = []
        y = []
        q = []
        fidx = 0
    
        for ix in ix0:
            for iy in iy0:
                # compute Poincare index around this cell (!= 0 for potential fixed point)
                diff[0,:] = tracers[iy, ix, 0, 2:4] - tracers[iy, ix, 0, 0:2]
                diff[1,:] = tracers[iy, ix+1, 0, 2:4] - tracers[iy, ix+1, 0, 0:2]
                diff[2,:] = tracers[iy+1, ix+1, 0, 2:4] - tracers[iy+1, ix+1, 0, 0:2]
                diff[3,:] = tracers[iy+1, ix, 0, 2:4] - tracers[iy+1, ix, 0, 0:2]
                if (sum(np.sum(diff**2, axis = 1) != 0) == True):
                    diff = np.swapaxes(np.swapaxes(diff, 0, 1) / np.sqrt(np.sum(diff**2, axis = 1)), 0, 1)
                poincare = pIndex(vv, p, tracers[iy, ix:ix+2, 0, 0], tracers[iy:iy+2, ix, 0, 1], diff, phiMin,
                                hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
                
                if (abs(poincare) > 5): # use 5 instead of 2pi to account for rounding errors
                    # subsample to get starting point for iteration
                    nt = 4
                    xmin = tracers[iy, ix, 0, 0]
                    ymin = tracers[iy, ix, 0, 1]
                    xmax = tracers[iy, ix+1, 0, 0]
                    ymax = tracers[iy+1, ix, 0, 1]
                    xx = np.zeros((nt**2,3))
                    tracersSub = np.zeros((nt**2,5))
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            xx[i1,0] = xmin + j1/(nt-1.)*(xmax - xmin)
                            xx[i1,1] = ymin + k1/(nt-1.)*(ymax - ymin)
                            xx[i1,2] = p.Oz
                            i1 += 1
                    for it1 in range(nt**2):
                        s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, 
                                    interpolation = interpolation, integration = integration, xx = xx[it1,:])
                        tracersSub[it1,0:2] = xx[it1,0:2]
                        tracersSub[it1,2:] = s.tracers[s.sl-1,:]
                    min2 = 1e6
                    minx = xmin
                    miny = ymin
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            diff2 = (tracersSub[i1, 2] - tracersSub[i1, 0])**2 + (tracersSub[i1, 3] - tracersSub[i1, 1])**2
                            if (diff2 < min2):
                                min2 = diff2
                                minx = xmin + j1/(nt-1.)*(xmax - xmin)
                                miny = ymin + k1/(nt-1.)*(ymax - ymin)
                            it1 += 1
                    
                    # get fixed point from this starting position using Newton's method                
                    #TODO:
                    dl = np.min(var.dx, var.dy)/100.    # step-size for calculating the Jacobian by finite differences
                    it = 0
                    # tracers used to find the fixed point
                    tracersNull = np.zeros((5,4))
                    point = np.array([minx, miny])
                    while True:
                        # trace field lines at original point and for Jacobian:
                        # (second order seems to be enough)
                        xx = np.zeros((5,3))
                        xx[0,:] = np.array([point[0], point[1], p.Oz])
                        xx[1,:] = np.array([point[0]-dl, point[1], p.Oz])
                        xx[2,:] = np.array([point[0]+dl, point[1], p.Oz])
                        xx[3,:] = np.array([point[0], point[1]-dl, p.Oz])
                        xx[4,:] = np.array([point[0], point[1]+dl, p.Oz])
                        for it1 in range(5):
                            s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,
                                        interpolation = interpolation, integration = integration, xx = xx[it1,:])
                            tracersNull[it1,:2] = xx[it1,:2]
                            tracersNull[it1,2:] = s.tracers[s.sl-1,0:2]
                        
                        # check function convergence
                        ff = np.zeros(2)
                        ff[0] = tracersNull[0,2] - tracersNull[0,0]
                        ff[1] = tracersNull[0,3] - tracersNull[0,1]
                        #TODO:
                        if (sum(abs(ff)) <= 1e-4):
                            fixedPoint = np.array([point[0], point[1]])
                            break
                        
                        # compute the Jacobian
                        fjac = np.zeros((2,2))
                        fjac[0,0] = ((tracersNull[2,2] - tracersNull[2,0]) - (tracersNull[1,2] - tracersNull[1,0]))/2./dl
                        fjac[0,1] = ((tracersNull[4,2] - tracersNull[4,0]) - (tracersNull[3,2] - tracersNull[3,0]))/2./dl
                        fjac[1,0] = ((tracersNull[2,3] - tracersNull[2,1]) - (tracersNull[1,3] - tracersNull[1,1]))/2./dl
                        fjac[1,1] = ((tracersNull[4,3] - tracersNull[4,1]) - (tracersNull[3,3] - tracersNull[3,1]))/2./dl
                        
                        # invert the Jacobian
                        fjin = np.zeros((2,2))
                        det = fjac[0,0]*fjac[1,1] - fjac[0,1]*fjac[1,0]
                        #TODO:
                        if (abs(det) < dl):
                            fixedPoint = point
                            break
                        fjin[0,0] = fjac[1,1]
                        fjin[1,1] = fjac[0,0]
                        fjin[0,1] = -fjac[0,1]
                        fjin[1,0] = -fjac[1,0]
                        fjin = fjin/det
                        dpoint = np.zeros(2)
                        dpoint[0] = -fjin[0,0]*ff[0] - fjin[0,1]*ff[1]
                        dpoint[1] = -fjin[1,0]*ff[0] - fjin[1,1]*ff[1]
                        point += dpoint
                        
                        # check root convergence
                        #TODO:
                        if (sum(abs(dpoint)) < 1e-4):
                            fixedPoint = point
                            break
                        
                        if (it > 20):
                            fixedPoint = point
                            print("warning: Newton did not converged")
                            break
                        
                        it += 1
                            
                    # check if fixed point lies inside the cell
                    if ((fixedPoint[0] < tracers[iy, ix, 0, 0]) or (fixedPoint[0] > tracers[iy, ix+1, 0, 0]) or
                        (fixedPoint[1] < tracers[iy, ix, 0, 1]) or (fixedPoint[1] > tracers[iy+1, ix, 0, 1])):
                        print("warning: fixed point lies outside the cell")
                    else:
                        x.append(fixedPoint[0])
                        y.append(fixedPoint[1])
                        #q.append()
                        fidx += 1
                        
        queue.put((x, y, q, fidx, iproc))
                    
                    
    # multi core setup
    if (np.isscalar(nproc) == False) or (nproc%1 != 0):
        print("error: invalid processor number")
        return -1
    queue = mp.Queue()
    proc = []
    
    # make sure to read the var files with the correct magic
    if (traceField == 'bb'):
        magic = 'bb'
    if (traceField == 'jj'):
        magic = 'jj'
    if (traceField == 'vort'):
        magic = 'vort'
        
    # read the cpu structure
    dim = pc.read_dim(datadir = datadir)
    if (dim.nprocz > 1):
        print("error: number of cores in z-direction > 1")

    var = pc.read_var(varfile = varfile, datadir = datadir, magic = magic, quiet = True, trimall = True)
    grid = pc.read_grid(datadir = datadir, quiet = True, trim = True)
    vv = getattr(var, traceField)
    
    # initialize the parameters
    p = pc.pClass()
    p.dx = var.dx; p.dy = var.dy; p.dz = var.dz
    p.Ox = var.x[0]; p.Oy = var.y[0]; p.Oz = var.z[0]
    p.Lx = grid.Lx; p.Ly = grid.Ly; p.Lz = grid.Lz
    p.nx = dim.nx; p.ny = dim.ny; p.nz = dim.nz
        
    # create the initial mapping
    tracers, mapping, t = pc.tracers(traceField = 'bb', hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,                                     
                                     interpolation = interpolation, trace_sub = trace_sub, varfile = varfile,
                                     integration = integration, datadir = datadir, destination = '', nproc = nproc)
    
    # find fixed points
    fixed = pc.fixed_struct()
    xyq = []    # list of  return values from subFixed
    ix0 = range(0,p.nx*trace_sub-1)   # set of grid indices for the cores
    iy0 = range(0,p.ny*trace_sub-1)   # set of grid indices for the cores
    subFixedLambda = lambda queue, ix0, iy0, vv, p, tracers, iproc: \
        subFixed(queue, ix0, iy0, vv, p, tracers, iproc, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,
                 interpolation = interpolation, integration = integration)
    for iproc in range(nproc):
        proc.append(mp.Process(target = subFixedLambda, args = (queue, ix0[iproc::nproc], iy0, vv, p, tracers, iproc)))
    for iproc in range(nproc):
        proc[iproc].start()
    for iproc in range(nproc):
        xyq.append(queue.get())
    for iproc in range(nproc):
        proc[iproc].join()
        
    # put together return values from subFixed
    fixed.fidx = 0
    fixed.t = var.t
    for iproc in range(nproc):
        fixed.x.append(xyq[xyq[iproc][4]][0])
        fixed.y.append(xyq[xyq[iproc][4]][1])
        fixed.q.append(xyq[xyq[iproc][4]][2])
        fixed.fidx += xyq[xyq[iproc][4]][3]
    
    fixed.t = np.array(fixed.t)
    fixed.x = np.array(fixed.x)
    fixed.y = np.array(fixed.y)
    fixed.q = np.array(fixed.q)
    fixed.fidx = np.array(fixed.fidx)

    return fixed
Beispiel #4
0
def fixed_points(datadir='data/',
                 fileName='fixed_points_post.dat',
                 varfile='VAR0',
                 ti=-1,
                 tf=-1,
                 traceField='bb',
                 hMin=2e-3,
                 hMax=2e4,
                 lMax=500,
                 tol=1e-2,
                 interpolation='weighted',
                 trace_sub=1,
                 integration='simple',
                 nproc=1):
    """
    Find the fixed points.

    call signature::

      fixed = fixed_points(datadir = 'data/', fileName = 'fixed_points_post.dat', varfile = 'VAR0', ti = -1, tf = -1,
                 traceField = 'bb', hMin = 2e-3, hMax = 2e4, lMax = 500, tol = 1e-2,
                 interpolation = 'weighted', trace_sub = 1, integration = 'simple', nproc = 1)

    Finds the fixed points. Returns the fixed points positions.

    Keyword arguments:

      *datadir*:
        Data directory.

      *fileName*:
        Name of the fixed points file.

     *varfile*:
       Varfile to be read.
       
      *ti*:
        Initial VAR file index for tracer time sequences. Overrides 'varfile'.
        
      *tf*:
        Final VAR file index for tracer time sequences. Overrides 'varfile'.        

     *traceField*:
       Vector field used for the streamline tracing.
        
     *hMin*:
       Minimum step length for and underflow to occur.
       
     *hMax*:
       Parameter for the initial step length.
       
     *lMax*:
       Maximum length of the streamline. Integration will stop if l >= lMax.
       
     *tol*:
       Tolerance for each integration step. Reduces the step length if error >= tol.
     
     *interpolation*:
       Interpolation of the vector field.
       'mean': takes the mean of the adjacent grid point.
       'weighted': weights the adjacent grid points according to their distance.
       
     *trace_sub*:
       Number of sub-grid cells for the seeds for the initial mapping.
       
     *intQ*:
       Quantities to be integrated along the streamlines.
     
      *integration*:
        Integration method.
        'simple': low order method.
        'RK6': Runge-Kutta 6th order.
       
     *nproc*:
       Number of cores for multi core computation.
    """
    class data_struct:
        def __init__(self):
            self.t = []
            self.fidx = []  # number of fixed points at this time
            self.x = []
            self.y = []
            self.q = []

    # Computes rotation along one edge.
    def edge(vv,
             p,
             sx,
             sy,
             diff1,
             diff2,
             phiMin,
             rec,
             hMin=hMin,
             hMax=hMax,
             lMax=lMax,
             tol=tol,
             interpolation=interpolation,
             integration=integration):
        dtot = m.atan2(diff1[0] * diff2[1] - diff2[0] * diff1[1],
                       diff1[0] * diff2[0] + diff1[1] * diff2[1])
        if ((abs(dtot) > phiMin) and (rec < 4)):
            xm = 0.5 * (sx[0] + sx[1])
            ym = 0.5 * (sy[0] + sy[1])
            # trace intermediate field line
            s = pc.stream(vv,
                          p,
                          hMin=hMin,
                          hMax=hMax,
                          lMax=lMax,
                          tol=tol,
                          interpolation=interpolation,
                          integration=integration,
                          xx=np.array([xm, ym, p.Oz]))
            tracer = np.concatenate(
                (s.tracers[0,
                           0:2], s.tracers[s.sl - 1, :], np.reshape(s.l, (1))))
            # discard any streamline which does not converge or hits the boundary
            if ((tracer[5] >= lMax) or (tracer[4] < p.Oz + p.Lz - p.dz)):
                dtot = 0.
            else:
                diffm = np.array(
                    [tracer[2] - tracer[0], tracer[3] - tracer[1]])
                if (sum(diffm**2) != 0):
                    diffm = diffm / np.sqrt(sum(diffm**2))
                dtot = edge(vv, p, [sx[0], xm], [sy[0], ym], diff1, diffm, phiMin, rec+1,
                             hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)+ \
                       edge(vv, p, [xm, sx[1]], [ym, sy[1]], diffm, diff2, phiMin, rec+1,
                             hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
        return dtot

    # Finds the Poincare index of this grid cell.
    def pIndex(vv,
               p,
               sx,
               sy,
               diff,
               phiMin,
               hMin=hMin,
               hMax=hMax,
               lMax=lMax,
               tol=tol,
               interpolation=interpolation,
               integration=integration):
        poincare = 0
        poincare += edge(vv,
                         p, [sx[0], sx[1]], [sy[0], sy[0]],
                         diff[0, :],
                         diff[1, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        poincare += edge(vv,
                         p, [sx[1], sx[1]], [sy[0], sy[1]],
                         diff[1, :],
                         diff[2, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        poincare += edge(vv,
                         p, [sx[1], sx[0]], [sy[1], sy[1]],
                         diff[2, :],
                         diff[3, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        poincare += edge(vv,
                         p, [sx[0], sx[0]], [sy[1], sy[0]],
                         diff[3, :],
                         diff[0, :],
                         phiMin,
                         0,
                         hMin=hMin,
                         hMax=hMax,
                         lMax=lMax,
                         tol=tol,
                         interpolation=interpolation,
                         integration=integration)
        return poincare

    # fixed point finder for a subset of the domain
    def subFixed(queue,
                 ix0,
                 iy0,
                 vv,
                 p,
                 tracers,
                 iproc,
                 hMin=2e-3,
                 hMax=2e4,
                 lMax=500,
                 tol=1e-2,
                 interpolation='weighted',
                 integration='simple'):
        diff = np.zeros((4, 2))
        phiMin = np.pi / 8.
        x = []
        y = []
        q = []
        fidx = 0

        for ix in ix0:
            for iy in iy0:
                # compute Poincare index around this cell (!= 0 for potential fixed point)
                diff[0, :] = tracers[iy, ix, 0, 2:4] - tracers[iy, ix, 0, 0:2]
                diff[1, :] = tracers[iy, ix + 1, 0, 2:4] - tracers[iy, ix + 1,
                                                                   0, 0:2]
                diff[2, :] = tracers[iy + 1, ix + 1, 0,
                                     2:4] - tracers[iy + 1, ix + 1, 0, 0:2]
                diff[3, :] = tracers[iy + 1, ix, 0, 2:4] - tracers[iy + 1, ix,
                                                                   0, 0:2]
                if (sum(np.sum(diff**2, axis=1) != 0) == True):
                    diff = np.swapaxes(
                        np.swapaxes(diff, 0, 1) /
                        np.sqrt(np.sum(diff**2, axis=1)), 0, 1)
                poincare = pIndex(vv,
                                  p,
                                  tracers[iy, ix:ix + 2, 0, 0],
                                  tracers[iy:iy + 2, ix, 0, 1],
                                  diff,
                                  phiMin,
                                  hMin=hMin,
                                  hMax=hMax,
                                  lMax=lMax,
                                  tol=tol,
                                  interpolation=interpolation,
                                  integration=integration)

                if (abs(poincare) > 5
                    ):  # use 5 instead of 2pi to account for rounding errors
                    # subsample to get starting point for iteration
                    nt = 4
                    xmin = tracers[iy, ix, 0, 0]
                    ymin = tracers[iy, ix, 0, 1]
                    xmax = tracers[iy, ix + 1, 0, 0]
                    ymax = tracers[iy + 1, ix, 0, 1]
                    xx = np.zeros((nt**2, 3))
                    tracersSub = np.zeros((nt**2, 5))
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            xx[i1, 0] = xmin + j1 / (nt - 1.) * (xmax - xmin)
                            xx[i1, 1] = ymin + k1 / (nt - 1.) * (ymax - ymin)
                            xx[i1, 2] = p.Oz
                            i1 += 1
                    for it1 in range(nt**2):
                        s = pc.stream(vv,
                                      p,
                                      hMin=hMin,
                                      hMax=hMax,
                                      lMax=lMax,
                                      tol=tol,
                                      interpolation=interpolation,
                                      integration=integration,
                                      xx=xx[it1, :])
                        tracersSub[it1, 0:2] = xx[it1, 0:2]
                        tracersSub[it1, 2:] = s.tracers[s.sl - 1, :]
                    min2 = 1e6
                    minx = xmin
                    miny = ymin
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            diff2 = (tracersSub[i1, 2] - tracersSub[i1, 0]
                                     )**2 + (tracersSub[i1, 3] -
                                             tracersSub[i1, 1])**2
                            if (diff2 < min2):
                                min2 = diff2
                                minx = xmin + j1 / (nt - 1.) * (xmax - xmin)
                                miny = ymin + k1 / (nt - 1.) * (ymax - ymin)
                            it1 += 1

                    # get fixed point from this starting position using Newton's method
                    #TODO:
                    dl = np.min(
                        var.dx, var.dy
                    ) / 100.  # step-size for calculating the Jacobian by finite differences
                    it = 0
                    # tracers used to find the fixed point
                    tracersNull = np.zeros((5, 4))
                    point = np.array([minx, miny])
                    while True:
                        # trace field lines at original point and for Jacobian:
                        # (second order seems to be enough)
                        xx = np.zeros((5, 3))
                        xx[0, :] = np.array([point[0], point[1], p.Oz])
                        xx[1, :] = np.array([point[0] - dl, point[1], p.Oz])
                        xx[2, :] = np.array([point[0] + dl, point[1], p.Oz])
                        xx[3, :] = np.array([point[0], point[1] - dl, p.Oz])
                        xx[4, :] = np.array([point[0], point[1] + dl, p.Oz])
                        for it1 in range(5):
                            s = pc.stream(vv,
                                          p,
                                          hMin=hMin,
                                          hMax=hMax,
                                          lMax=lMax,
                                          tol=tol,
                                          interpolation=interpolation,
                                          integration=integration,
                                          xx=xx[it1, :])
                            tracersNull[it1, :2] = xx[it1, :2]
                            tracersNull[it1, 2:] = s.tracers[s.sl - 1, 0:2]

                        # check function convergence
                        ff = np.zeros(2)
                        ff[0] = tracersNull[0, 2] - tracersNull[0, 0]
                        ff[1] = tracersNull[0, 3] - tracersNull[0, 1]
                        #TODO:
                        if (sum(abs(ff)) <= 1e-4):
                            fixedPoint = np.array([point[0], point[1]])
                            break

                        # compute the Jacobian
                        fjac = np.zeros((2, 2))
                        fjac[0, 0] = (
                            (tracersNull[2, 2] - tracersNull[2, 0]) -
                            (tracersNull[1, 2] - tracersNull[1, 0])) / 2. / dl
                        fjac[0, 1] = (
                            (tracersNull[4, 2] - tracersNull[4, 0]) -
                            (tracersNull[3, 2] - tracersNull[3, 0])) / 2. / dl
                        fjac[1, 0] = (
                            (tracersNull[2, 3] - tracersNull[2, 1]) -
                            (tracersNull[1, 3] - tracersNull[1, 1])) / 2. / dl
                        fjac[1, 1] = (
                            (tracersNull[4, 3] - tracersNull[4, 1]) -
                            (tracersNull[3, 3] - tracersNull[3, 1])) / 2. / dl

                        # invert the Jacobian
                        fjin = np.zeros((2, 2))
                        det = fjac[0, 0] * fjac[1, 1] - fjac[0, 1] * fjac[1, 0]
                        #TODO:
                        if (abs(det) < dl):
                            fixedPoint = point
                            break
                        fjin[0, 0] = fjac[1, 1]
                        fjin[1, 1] = fjac[0, 0]
                        fjin[0, 1] = -fjac[0, 1]
                        fjin[1, 0] = -fjac[1, 0]
                        fjin = fjin / det
                        dpoint = np.zeros(2)
                        dpoint[0] = -fjin[0, 0] * ff[0] - fjin[0, 1] * ff[1]
                        dpoint[1] = -fjin[1, 0] * ff[0] - fjin[1, 1] * ff[1]
                        point += dpoint

                        # check root convergence
                        #TODO:
                        if (sum(abs(dpoint)) < 1e-4):
                            fixedPoint = point
                            break

                        if (it > 20):
                            fixedPoint = point
                            print "warning: Newton did not converged"
                            break

                        it += 1

                    # check if fixed point lies inside the cell
                    if ((fixedPoint[0] < tracers[iy, ix, 0, 0])
                            or (fixedPoint[0] > tracers[iy, ix + 1, 0, 0])
                            or (fixedPoint[1] < tracers[iy, ix, 0, 1])
                            or (fixedPoint[1] > tracers[iy + 1, ix, 0, 1])):
                        print "warning: fixed point lies outside the cell"
                    else:
                        x.append(fixedPoint[0])
                        y.append(fixedPoint[1])
                        #q.append()
                        fidx += 1

        queue.put((x, y, q, fidx, iproc))

    # multi core setup
    if (np.isscalar(nproc) == False) or (nproc % 1 != 0):
        print("error: invalid processor number")
        return -1
    queue = mp.Queue()
    proc = []

    # make sure to read the var files with the correct magic
    if (traceField == 'bb'):
        magic = 'bb'
    if (traceField == 'jj'):
        magic = 'jj'
    if (traceField == 'vort'):
        magic = 'vort'

    # read the cpu structure
    dim = pc.read_dim(datadir=datadir)
    if (dim.nprocz > 1):
        print "error: number of cores in z-direction > 1"

    var = pc.read_var(varfile=varfile,
                      datadir=datadir,
                      magic=magic,
                      quiet=True,
                      trimall=True)
    grid = pc.read_grid(datadir=datadir, quiet=True, trim=True)
    vv = getattr(var, traceField)

    # initialize the parameters
    p = pc.pClass()
    p.dx = var.dx
    p.dy = var.dy
    p.dz = var.dz
    p.Ox = var.x[0]
    p.Oy = var.y[0]
    p.Oz = var.z[0]
    p.Lx = grid.Lx
    p.Ly = grid.Ly
    p.Lz = grid.Lz
    p.nx = dim.nx
    p.ny = dim.ny
    p.nz = dim.nz

    # create the initial mapping
    tracers, mapping, t = pc.tracers(traceField='bb',
                                     hMin=hMin,
                                     hMax=hMax,
                                     lMax=lMax,
                                     tol=tol,
                                     interpolation=interpolation,
                                     trace_sub=trace_sub,
                                     varfile=varfile,
                                     integration=integration,
                                     datadir=datadir,
                                     destination='',
                                     nproc=nproc)

    # find fixed points
    fixed = pc.fixed_struct()
    xyq = []  # list of  return values from subFixed
    ix0 = range(0, p.nx * trace_sub - 1)  # set of grid indices for the cores
    iy0 = range(0, p.ny * trace_sub - 1)  # set of grid indices for the cores
    subFixedLambda = lambda queue, ix0, iy0, vv, p, tracers, iproc: \
        subFixed(queue, ix0, iy0, vv, p, tracers, iproc, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,
                 interpolation = interpolation, integration = integration)
    for iproc in range(nproc):
        proc.append(
            mp.Process(target=subFixedLambda,
                       args=(queue, ix0[iproc::nproc], iy0, vv, p, tracers,
                             iproc)))
    for iproc in range(nproc):
        proc[iproc].start()
    for iproc in range(nproc):
        xyq.append(queue.get())
    for iproc in range(nproc):
        proc[iproc].join()

    # put together return values from subFixed
    fixed.fidx = 0
    fixed.t = var.t
    for iproc in range(nproc):
        fixed.x.append(xyq[xyq[iproc][4]][0])
        fixed.y.append(xyq[xyq[iproc][4]][1])
        fixed.q.append(xyq[xyq[iproc][4]][2])
        fixed.fidx += xyq[xyq[iproc][4]][3]

    fixed.t = np.array(fixed.t)
    fixed.x = np.array(fixed.x)
    fixed.y = np.array(fixed.y)
    fixed.q = np.array(fixed.q)
    fixed.fidx = np.array(fixed.fidx)

    return fixed