Beispiel #1
0
taylor2.setInterestVariables(['fake_var'])
myStudy.add(taylor2)

# 3- reliability ##

# limit state ##
limitState = persalys.LimitState('aLimitState', model1, 'y1', ot.Greater(),
                                 0.5)
myStudy.add(limitState)

optimAlgo = ot.AbdoRackwitz()
optimAlgo.setMaximumIterationNumber(150)
optimAlgo.setMaximumAbsoluteError(1e-3)

# 3-a Monte Carlo ##
monteCarloReliability = persalys.MonteCarloReliabilityAnalysis(
    'MonteCarloReliability', limitState)
monteCarloReliability.setMaximumCoefficientOfVariation(-1.)
monteCarloReliability.setMaximumElapsedTime(1000)
monteCarloReliability.setMaximumCalls(20)
monteCarloReliability.setSeed(2)
myStudy.add(monteCarloReliability)

# 3-b FORM IS ##
form_is = persalys.FORMImportanceSamplingAnalysis('FORM_IS', limitState)
form_is.setOptimizationAlgorithm(optimAlgo)
form_is.setMaximumCoefficientOfVariation(-1.)
form_is.setMaximumElapsedTime(1000)
form_is.setMaximumCalls(20)
form_is.setSeed(2)
myStudy.add(form_is)
Beispiel #2
0
Q = persalys.Input('Q', 1000., dist_Q, 'Débit maximal annuel (m3/s)')
Ks = persalys.Input('Ks', 30., dist_Ks, 'Strickler (m^(1/3)/s)')
Zv = persalys.Input('Zv', 50., dist_Zv, 'Côte de la rivière en aval (m)')
Zm = persalys.Input('Zm', 55., dist_Zm, 'Côte de la rivière en amont (m)')
S = persalys.Output('S', 'Surverse (m)')

model = persalys.SymbolicPhysicalModel('myPhysicalModel', [Q, Ks, Zv, Zm], [
                                        S], ['(Q/(Ks*300.*sqrt((Zm-Zv)/5000)))^(3.0/5.0)+Zv-55.5-3.'])
myStudy.add(model)

# limit state ##
limitState = persalys.LimitState('limitState1', model, 'S', ot.Greater(), 0.)
myStudy.add(limitState)

# Monte Carlo ##
montecarlo = persalys.MonteCarloReliabilityAnalysis(
    'myMonteCarlo', limitState)
montecarlo.setMaximumCalls(10000)
myStudy.add(montecarlo)

montecarlo.run()
montecarloResult = montecarlo.getResult()

# Comparaison
openturns.testing.assert_almost_equal(montecarloResult.getSimulationResult().getProbabilityEstimate(), 0.0, 1e-6)

# FORM-IS ##
formIS = persalys.FORMImportanceSamplingAnalysis('myformIS', limitState)
formIS.setMaximumCoefficientOfVariation(0.01)
formIS.setMaximumCalls(10000)
formIS.setBlockSize(1000)
myStudy.add(formIS)
Beispiel #3
0
# Model
X0 = persalys.Input('X0', ot.Normal(1, 1))
X1 = persalys.Input('X1', ot.Normal(1, 1))
Y0 = persalys.Output('Y0')

model = persalys.SymbolicPhysicalModel('aModelPhys', [X0, X1], [Y0],
                                       ['sin(X0) + 8*X1'])
myStudy.add(model)

# limit state ##
limitState = persalys.LimitState('aLimitState', model, 'Y0', ot.Greater(), 20.)
myStudy.add(limitState)

# Monte Carlo ##
analysis = persalys.MonteCarloReliabilityAnalysis('myMonteCarlo', limitState)
analysis.setMaximumCalls(1000)
analysis.setSeed(2)
myStudy.add(analysis)
print(analysis)

analysis.run()

print("result=", analysis.getResult())

# Monte Carlo ##
analysis2 = persalys.MonteCarloReliabilityAnalysis('myMonteCarlo2', limitState)
analysis2.setMaximumCoefficientOfVariation(0.02)
analysis2.setMaximumElapsedTime(100000)
analysis2.setBlockSize(100)
myStudy.add(analysis2)