Beispiel #1
0
def create_from_params(profile,
                       func,
                       of_key,
                       through_key,
                       by_key,
                       stacked,
                       accumulate,
                       x_axis_label,
                       y_axis_label,
                       graph_title,
                       graph_width=800):
    """Creates Flow graph according to the given parameters.

    Takes the input profile, converts it first to pandas.DataFrame. Then the data are grouped
    according to the 'by_key' and then grouped again for each 'through' key. For this atomic
    groups aggregation function is used.

    For each computed data, we output the area and points.

    Arguments:
        profile(dict): dictionary with measured data
        func(str): function that will be used for aggregation of the data
        of_key(str): key that specifies which fields of the resource entry will be used as data
        through_key(str): key that specifies fields of the resource that will be on the x axis
        by_key(str): key that specifies values for which graphs will be outputed
        stacked(bool): true if the values of the graphs should be stacked on each other
          -> this shows the overall values
        accumulate(bool): true if the values from previous x values should be accumulated
        x_axis_label(str): label on the x axis
        y_axis_label(str): label on the y axis
        graph_title(str): name of the graph
        graph_width(int): width of the created bokeh graph

    Returns:
        charts.Area: flow graph according to the params
    """
    # Convert profile to pandas data grid
    data_frame = convert.resources_to_pandas_dataframe(profile)
    data_source = construct_data_source_from(data_frame, func, of_key, by_key,
                                             through_key, accumulate)

    # Obtain colours, which will be sorted in reverse
    key_colours = bokeh_helpers.get_unique_colours_for_(
        data_frame, by_key, sort_color_style=bokeh_helpers.ColourSort.Reverse)

    # Construct the area chart
    area_chart = charts.Area(data_source, stack=stacked, color=key_colours)

    # Configure graph and return it
    bokeh_helpers.configure_graph(area_chart, profile, func, graph_title,
                                  x_axis_label, y_axis_label, graph_width)
    configure_area_chart(area_chart, data_frame, data_source, through_key,
                         stacked)

    return area_chart
Beispiel #2
0
def create_from_params(profile,
                       of_key,
                       per_key,
                       x_axis_label,
                       y_axis_label,
                       graph_title,
                       graph_width=800):
    """Creates Scatter plot graph according to the given parameters.

    Takes the input profile, convert it to pandas.DataFrame. Then the data according to 'of_key'
    parameter are used as values and are output depending on values of 'per_key'.
    Furthermore, models records are also plotted if the profile contains them.

    :param dict profile: dictionary with measured data
    :param str of_key: key that specifies which fields of the resource entry will be used as data
    :param str per_key: key that specifies fields of the resource that will be on the x axis
    :param str x_axis_label: label on the x axis
    :param str y_axis_label: label on the y axis
    :param str graph_title: name of the graph
    :param int graph_width: width of the created bokeh graph
    :returns uid, charts.Scatter: uid and scatter plot graph with models built according to the
        params
    """
    for data_slice, models_slice in generate_plot_data_slices(profile):
        # Plot the points as a scatter plot
        scatter = charts.Scatter(
            data_slice,
            x=per_key,
            y=of_key,
            title=graph_title,
            xlabel=x_axis_label,
            ylabel=y_axis_label,
            tools='pan,wheel_zoom,box_zoom,zoom_in,zoom_out,crosshair,'
            'reset,save')

        # Configure the graph properties
        # Create the graph title as a combination of default parameter, uid, method and
        # interval values (only if models are plotted) for easier identification
        this_graph_title = graph_title + '; uid: {0}'.format(
            data_slice.uid.values[0])
        if models_slice:
            this_graph_title += ('; method: {0}; interval <{1}, {2}>'.format(
                models_slice[0]['method'], models_slice[0]['x_interval_start'],
                models_slice[0]['x_interval_end']))
        bokeh_helpers.configure_graph(scatter, profile, 'count',
                                      this_graph_title, x_axis_label,
                                      y_axis_label, graph_width)

        # Plot all models
        scatter = draw_models(scatter, models_slice, profile)

        yield '{}'.format(data_slice.uid.values[0]), scatter
Beispiel #3
0
def create_from_params(profile,
                       func,
                       of_key,
                       per_key,
                       by_key,
                       cummulation_type,
                       x_axis_label,
                       y_axis_label,
                       graph_title,
                       graph_width=800):
    """Creates Bar graph according to the given parameters.

    Takes the input profile, convert it to pandas.DataFrame. Then the data according to 'of_key'
    parameter are used as values and are output by aggregation function of 'func' depending on
    values of 'per_key'. Values are further stacked by 'by_key' key and cummulated according to the
    type.

    Arguments:
        profile(dict): dictionary with measured data
        func(str): function that will be used for aggregation of the data
        of_key(str): key that specifies which fields of the resource entry will be used as data
        per_key(str): key that specifies fields of the resource that will be on the x axis
        by_key(str): key that specifies grouping or stacking of the resources
        cummulation_type(str): type of the cummulation of the data (either stacked or grouped)
        x_axis_label(str): label on the x axis
        y_axis_label(str): label on the y axis
        graph_title(str): name of the graph
        graph_width(int): width of the created bokeh graph

    Returns:
        charts.Bar: bar graph according to the params
    """
    # Convert profile to pandas data grid
    data_frame = convert.resources_to_pandas_dataframe(profile)

    # Create basic graph:
    if cummulation_type == 'stacked':
        bar_graph = create_stacked_bar_graph(data_frame, func, of_key, per_key,
                                             by_key)
    elif cummulation_type == 'grouped':
        bar_graph = create_grouped_bar_graph(data_frame, func, of_key, per_key,
                                             by_key)
    else:
        log.error("unknown cummulation type '{}'".format(cummulation_type))

    # Call basic configuration of the graph
    bokeh_helpers.configure_graph(bar_graph, profile, func, graph_title,
                                  x_axis_label, y_axis_label, graph_width)

    return bar_graph