def consistent_Fc_storage(cfg, ds, site): """ Purpose: Make the various incarnations of single point Fc storage consistent. Author: PRI Date: November 2019 """ ## save Fc_single if it exists - debug only #labels = ds.series.keys() #if "Fc_single" in labels: #variable = pfp_utils.GetVariable(ds, "Fc_single") #variable["Label"] = "Fc_sinorg" #pfp_utils.CreateVariable(ds, variable) #pfp_utils.DeleteVariable(ds, "Fc_single") # do nothing if Fc_single exists labels = list(ds.series.keys()) if "Fc_single" in labels: pass # Fc_single may be called Fc_storage elif "Fc_storage" in labels: level = ds.globalattributes["nc_level"] descr = "description_" + level variable = pfp_utils.GetVariable(ds, "Fc_storage") if "using single point CO2 measurement" in variable["Attr"][descr]: variable["Label"] = "Fc_single" pfp_utils.CreateVariable(ds, variable) pfp_utils.DeleteVariable(ds, "Fc_storage") else: # neither Fc_single nor Fc_storage exist, try to calculate # check to see if the measurement height is defined zms = None CO2 = pfp_utils.GetVariable(ds, "CO2") if "height" in CO2["Attr"]: zms = pfp_utils.get_number_from_heightstring(CO2["Attr"]["height"]) if zms is None: xls_name = cfg["Files"]["site_information"] site_information = xl_read_site_information(xls_name, site) if len(site_information) != 0: s = site_information["IRGA"]["Height"] zms = pfp_utils.get_number_from_heightstring(s) else: while zms is None: file_name = cfg["Files"]["in_filename"] prompt = "Enter CO2 measuement height in metres" text, ok = QtWidgets.QInputDialog.getText( None, file_name, prompt, QtWidgets.QLineEdit.Normal, "") zms = pfp_utils.get_number_from_heightstring(text) # update the CO2 variable attribute CO2["Attr"]["height"] = zms pfp_utils.CreateVariable(ds, CO2) # calculate single point Fc storage term cf = {"Options": {"zms": zms}} pfp_ts.CalculateFcStorageSinglePoint(cf, ds) # convert Fc_single from mg/m2/s to umol/m2/s pfp_utils.CheckUnits(ds, "Fc_single", "umol/m2/s", convert_units=True) return
def l6qc(main_gui, cf, ds5): ds6 = pfp_io.copy_datastructure(cf, ds5) # ds6 will be empty (logical false) if an error occurs in copy_datastructure # return from this routine if this is the case if not ds6: return ds6 # set some attributes for this level pfp_utils.UpdateGlobalAttributes(cf, ds6, "L6") # parse the control file l6_info = pfp_rp.ParseL6ControlFile(cf, ds6) # check to see if we have any imports pfp_gf.ImportSeries(cf, ds6) # check units of Fc Fc_list = [label for label in ds6.series.keys() if label[0:2] == "Fc"] pfp_utils.CheckUnits(ds6, Fc_list, "umol/m2/s", convert_units=True) # get ER from the observed Fc pfp_rp.GetERFromFc(cf, ds6) # return code will be non-zero if turbulance filter not applied to CO2 flux if ds6.returncodes["value"] != 0: return ds6 # estimate ER using SOLO if "ERUsingSOLO" in l6_info: pfp_rp.ERUsingSOLO(main_gui, ds6, l6_info, "ERUsingSOLO") if ds6.returncodes["value"] != 0: return ds6 # estimate ER using FFNET #pfp_rp.ERUsingFFNET(cf, ds6, l6_info) # estimate ER using Lloyd-Taylor pfp_rp.ERUsingLloydTaylor(cf, ds6, l6_info) # estimate ER using Lasslop et al pfp_rp.ERUsingLasslop(ds6, l6_info) # merge the estimates of ER with the observations pfp_ts.MergeSeriesUsingDict(ds6, l6_info, merge_order="standard") # calculate NEE from Fc and ER pfp_rp.CalculateNEE(cf, ds6, l6_info) # calculate NEP from NEE pfp_rp.CalculateNEP(cf, ds6) # calculate ET from Fe pfp_rp.CalculateET(ds6) # partition NEE into GPP and ER pfp_rp.PartitionNEE(ds6, l6_info) # write the percentage of good data as a variable attribute pfp_utils.get_coverage_individual(ds6) # write the percentage of good data for groups pfp_utils.get_coverage_groups(ds6) # remove intermediate series from the data structure pfp_ts.RemoveIntermediateSeries(ds6, l6_info) # do the L6 summary pfp_rp.L6_summary(cf, ds6) return ds6
def l3qc(cf, ds2): """ """ # make a copy of the L2 data ds3 = copy.deepcopy(ds2) # set some attributes for this level pfp_utils.UpdateGlobalAttributes(cf, ds3, "L3") # put the control file name into the global attributes ds3.globalattributes['controlfile_name'] = cf['controlfile_name'] # check to see if we have any imports pfp_gf.ImportSeries(cf, ds3) # apply linear corrections to the data pfp_ck.do_linear(cf, ds3) # ************************ # *** Merge humidities *** # ************************ # merge whatever humidities are available pfp_ts.MergeHumidities(cf, ds3, convert_units=True) # ************************** # *** Merge temperatures *** # ************************** # get the air temperature from the CSAT virtual temperature pfp_ts.TaFromTv(cf, ds3) # merge the HMP and corrected CSAT data pfp_ts.MergeSeries(cf, ds3, "Ta", convert_units=True) pfp_utils.CheckUnits(ds3, "Ta", "C", convert_units=True) # *************************** # *** Calcuate humidities *** # *************************** # calculate humidities (absolute, specific and relative) from whatever is available pfp_ts.CalculateHumidities(ds3) # ******************************** # *** Merge CO2 concentrations *** # ******************************** # merge the 7500 CO2 concentration # PRI 09/08/2017 possibly the ugliest thing I have done yet # This needs to be abstracted to a general alias checking routine at the # start of the L3 processing so that possible aliases are mapped to a single # set of variable names. if "CO2" in cf["Variables"]: CO2 = "CO2" elif "Cc" in cf["Variables"]: CO2 = "Cc" else: msg = "Label for CO2 ('CO2','Cc') not found in control file" logger.error(msg) return pfp_ts.MergeSeries(cf, ds3, CO2, convert_units=True) # ****************************************** # *** Calculate meteorological variables *** # ****************************************** # Update meteorological variables pfp_ts.CalculateMeteorologicalVariables(ds3) # ************************************************* # *** Calculate fluxes from covariances section *** # ************************************************* # check to see if the user wants to use the fluxes in the L2 file if not pfp_utils.cfoptionskeylogical(cf, Key="UseL2Fluxes", default=False): # check the covariance units and change if necessary pfp_ts.CheckCovarianceUnits(ds3) # do the 2D coordinate rotation pfp_ts.CoordRotation2D(cf, ds3) # do the Massman frequency attenuation correction pfp_ts.MassmanStandard(cf, ds3) # calculate the fluxes pfp_ts.CalculateFluxes(cf, ds3) # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual) pfp_ts.FhvtoFh(cf, ds3) # correct the H2O & CO2 flux due to effects of flux on density measurements pfp_ts.Fe_WPL(cf, ds3) pfp_ts.Fc_WPL(cf, ds3) # ************************************** # *** Calculate Monin-Obukhov length *** # ************************************** pfp_ts.CalculateMoninObukhovLength(ds3) # ************************** # *** CO2 and Fc section *** # ************************** # convert CO2 units if required pfp_utils.ConvertCO2Units(cf, ds3, CO2=CO2) # calculate Fc storage term - single height only at present pfp_ts.CalculateFcStorageSinglePoint(cf, ds3, Fc_out='Fc_single', CO2_in=CO2) # convert Fc and Fc_storage units if required pfp_utils.ConvertFcUnits(cf, ds3) # merge Fc and Fc_storage series if required merge_list = [ label for label in cf["Variables"].keys() if label[0:2] == "Fc" and "MergeSeries" in cf["Variables"][label].keys() ] for label in merge_list: pfp_ts.MergeSeries(cf, ds3, label, save_originals=True) # correct Fc for storage term - only recommended if storage calculated from profile available pfp_ts.CorrectFcForStorage(cf, ds3) # ************************* # *** Radiation section *** # ************************* # merge the incoming shortwave radiation pfp_ts.MergeSeries(cf, ds3, 'Fsd') # calculate the net radiation from the Kipp and Zonen CNR1 pfp_ts.CalculateNetRadiation(cf, ds3, Fn_out='Fn_KZ', Fsd_in='Fsd', Fsu_in='Fsu', Fld_in='Fld', Flu_in='Flu') pfp_ts.MergeSeries(cf, ds3, 'Fn') # **************************************** # *** Wind speed and direction section *** # **************************************** # combine wind speed from the Wind Sentry and the SONIC pfp_ts.MergeSeries(cf, ds3, 'Ws') # combine wind direction from the Wind Sentry and the SONIC pfp_ts.MergeSeries(cf, ds3, 'Wd') # ******************** # *** Soil section *** # ******************** # correct soil heat flux for storage # ... either average the raw ground heat flux, soil temperature and moisture # and then do the correction (OzFlux "standard") pfp_ts.AverageSeriesByElements(cf, ds3, 'Ts') pfp_ts.AverageSeriesByElements(cf, ds3, 'Sws') if pfp_utils.cfoptionskeylogical(cf, Key='CorrectIndividualFg'): # ... or correct the individual ground heat flux measurements (James' method) pfp_ts.CorrectIndividualFgForStorage(cf, ds3) pfp_ts.AverageSeriesByElements(cf, ds3, 'Fg') else: pfp_ts.AverageSeriesByElements(cf, ds3, 'Fg') pfp_ts.CorrectFgForStorage(cf, ds3, Fg_out='Fg', Fg_in='Fg', Ts_in='Ts', Sws_in='Sws') # calculate the available energy pfp_ts.CalculateAvailableEnergy(ds3, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg') # create new series using MergeSeries or AverageSeries pfp_ck.CreateNewSeries(cf, ds3) # re-apply the quality control checks (range, diurnal and rules) pfp_ck.do_qcchecks(cf, ds3) # coordinate gaps in the three main fluxes pfp_ck.CoordinateFluxGaps(cf, ds3) # coordinate gaps in Ah_7500_Av with Fc pfp_ck.CoordinateAh7500AndFcGaps(cf, ds3) # check missing data and QC flags are consistent pfp_utils.CheckQCFlags(ds3) # get the statistics for the QC flags and write these to an Excel spreadsheet pfp_io.get_seriesstats(cf, ds3) # write the percentage of good data as a variable attribute pfp_utils.get_coverage_individual(ds3) # write the percentage of good data for groups pfp_utils.get_coverage_groups(ds3) return ds3
def l3qc(cf, ds2): """ """ # make a copy of the L2 data ds3 = copy.deepcopy(ds2) # set some attributes for this level pfp_utils.UpdateGlobalAttributes(cf, ds3, "L3") # check to see if we have any imports pfp_gf.ImportSeries(cf,ds3) # apply linear corrections to the data pfp_ck.do_linear(cf,ds3) # parse the control file for information on how the user wants to do the gap filling l3_info = pfp_compliance.ParseL3ControlFile(cf, ds3) if l3_info["status"]["value"] != 0: logger.error(l3_info["status"]["message"]) return ds3 # ************************ # *** Merge humidities *** # ************************ # merge whatever humidities are available pfp_ts.MergeHumidities(cf, ds3, convert_units=True) # ************************** # *** Merge temperatures *** # ************************** # get the air temperature from the CSAT virtual temperature pfp_ts.TaFromTv(cf, ds3) # merge the HMP and corrected CSAT data pfp_ts.CombineSeries(cf, ds3, "Ta", convert_units=True) pfp_utils.CheckUnits(ds3, "Ta", "degC", convert_units=True) # *************************** # *** Calcuate humidities *** # *************************** # calculate humidities (absolute, specific and relative) from whatever is available pfp_ts.CalculateHumidities(ds3) # ******************************** # *** Merge CO2 concentrations *** # ******************************** # merge the CO2 concentration pfp_ts.CombineSeries(cf, ds3, l3_info["CO2"]["label"], convert_units=True) # ****************************************** # *** Calculate meteorological variables *** # ****************************************** # Update meteorological variables pfp_ts.CalculateMeteorologicalVariables(ds3, l3_info) # ************************************************* # *** Calculate fluxes from covariances section *** # ************************************************* # check to see if the user wants to use the fluxes in the L2 file if not pfp_utils.get_optionskeyaslogical(cf, "UseL2Fluxes", default=False): # check the covariance units and change if necessary pfp_ts.CheckCovarianceUnits(ds3) # do the 2D coordinate rotation pfp_ts.CoordRotation2D(cf, ds3) # do the Massman frequency attenuation correction pfp_ts.MassmanStandard(cf, ds3) # calculate the fluxes pfp_ts.CalculateFluxes(cf, ds3) # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual) pfp_ts.FhvtoFh(cf, ds3) # correct the H2O & CO2 flux due to effects of flux on density measurements if pfp_ts.Fe_WPL(cf, ds3): return ds3 if pfp_ts.Fco2_WPL(cf, ds3): return ds3 # ************************** # *** CO2 and Fc section *** # ************************** # convert CO2 units if required pfp_utils.ConvertCO2Units(cf, ds3) # calculate Fco2 storage term - single height only at present pfp_ts.CalculateFco2StorageSinglePoint(cf, ds3, l3_info["CO2"]["label"]) # convert Fco2 units if required pfp_utils.ConvertFco2Units(cf, ds3) # merge Fco2 and Fco2_storage series if required pfp_ts.CombineSeries(cf, ds3, l3_info["Fco2"]["combine_list"], save_originals=True) # correct Fco2 for storage term - only recommended if storage calculated from profile available pfp_ts.CorrectFco2ForStorage(cf, ds3) # ************************* # *** Radiation section *** # ************************* # merge the incoming shortwave radiation pfp_ts.CombineSeries(cf, ds3, "Fsd") # calculate the net radiation from the Kipp and Zonen CNR1 pfp_ts.CalculateNetRadiation(cf, ds3) pfp_ts.CombineSeries(cf, ds3, "Fn") # **************************************** # *** Wind speed and direction section *** # **************************************** # combine wind speed from the Wind Sentry and the SONIC pfp_ts.CombineSeries(cf,ds3, "Ws") # combine wind direction from the Wind Sentry and the SONIC pfp_ts.CombineSeries(cf,ds3, "Wd") # ******************** # *** Soil section *** # ******************** # correct soil heat flux for storage # ... either average the raw ground heat flux, soil temperature and moisture # and then do the correction (OzFlux "standard") pfp_ts.CombineSeries(cf, ds3, "Ts") pfp_ts.CombineSeries(cf, ds3, "Sws") if pfp_utils.get_optionskeyaslogical(cf, "CorrectIndividualFg"): # ... or correct the individual ground heat flux measurements (James' method) pfp_ts.CorrectIndividualFgForStorage(cf, ds3) pfp_ts.CombineSeries(cf, ds3, "Fg") else: pfp_ts.CombineSeries(cf, ds3, "Fg") pfp_ts.CorrectFgForStorage(cf, ds3) # calculate the available energy pfp_ts.CalculateAvailableEnergy(ds3) # create new series using MergeSeries or AverageSeries pfp_ck.CreateNewSeries(cf, ds3) # Calculate Monin-Obukhov length pfp_ts.CalculateMoninObukhovLength(ds3) # re-apply the quality control checks (range, diurnal and rules) pfp_ck.do_qcchecks(cf, ds3) # check missing data and QC flags are consistent pfp_utils.CheckQCFlags(ds3) # get the statistics for the QC flags and write these to an Excel spreadsheet pfp_io.get_seriesstats(cf, ds3) # write the percentage of good data as a variable attribute pfp_utils.get_coverage_individual(ds3) # write the percentage of good data for groups pfp_utils.get_coverage_groups(ds3) # remove intermediate series from the data structure pfp_ts.RemoveIntermediateSeries(ds3, l3_info) return ds3