Beispiel #1
0
def runner_func(dataset, state_dict, stats, gpu_id, index_queue, result_queue,
                iou_dict, dis_dict):
    torch.cuda.set_device(gpu_id)
    net = PGCN(model_configs, graph_configs, dataset_configs, test_mode=True)
    net.load_state_dict(state_dict)
    # net.prepare_test_fc()
    net.eval()
    net.cuda()

    while True:
        index = index_queue.get()

        rel_props, prop_ticks, video_id, n_frames = dataset[index]

        # calculate scores
        # n_out = prop_ticks.size(0)
        # act_scores = torch.zeros((n_out, num_class + 1)).cuda()
        # comp_scores = torch.zeros((n_out, num_class)).cuda()

        # if not args.no_regression:
        #     reg_scores = torch.zeros((n_out, num_class * 2)).cuda()
        # else:
        #     reg_scores = None

        # load prop fts
        vid_full_name = video_id
        vid = vid_full_name.split('/')[-1]

        act_all_fts, comp_all_fts = I3D_Pooling(
            prop_ticks, vid, dataset_configs['test_ft_path'], n_frames)

        with torch.no_grad():
            vid_iou_dict = torch.from_numpy(iou_dict[vid]).cuda()
            vid_dis_dict = torch.from_numpy(dis_dict[vid]).cuda()

            act_scores, comp_scores, reg_scores = net(act_all_fts.cuda(),
                                                      comp_all_fts.cuda(),
                                                      iou_dict=vid_iou_dict,
                                                      dis_dict=vid_dis_dict)

            if reg_scores is not None:
                reg_scores = reg_scores.view(-1, num_class, 2)
                reg_scores[:, :,
                           0] = reg_scores[:, :, 0] * stats[1, 0] + stats[0, 0]
                reg_scores[:, :,
                           1] = reg_scores[:, :, 1] * stats[1, 1] + stats[0, 1]

            result_queue.put((dataset.video_list[index].id, rel_props.numpy(),
                              act_scores.squeeze().cpu().numpy(),
                              comp_scores.squeeze().cpu().numpy(),
                              reg_scores.cpu().numpy(), 0))
Beispiel #2
0
def main():
    global args, best_loss, writer, adj_num, logger

    configs = get_and_save_args(parser)
    parser.set_defaults(**configs)
    dataset_configs = configs["dataset_configs"]
    model_configs = configs["model_configs"]
    graph_configs = configs["graph_configs"]
    args = parser.parse_args()
    """copy codes and creat dir for saving models and logs"""
    if not os.path.isdir(args.snapshot_pref):
        os.makedirs(args.snapshot_pref)

    logger = get_logger(args)
    logger.info('\ncreating folder: ' + args.snapshot_pref)

    # if not args.evaluate:
    writer = SummaryWriter(args.snapshot_pref)
    #    recorder = Recorder(args.snapshot_pref, ["models", "__pycache__"])
    #    recorder.writeopt(args)

    logger.info('\nruntime args\n\n{}\n\nconfig\n\n{}'.format(
        args, dataset_configs))
    """construct model"""
    model = PGCN(model_configs, graph_configs)
    policies = model.get_optim_policies()
    model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
    if args.resume:
        if os.path.isfile(args.resume):
            logger.info(("=> loading checkpoint '{}'".format(args.resume)))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_loss = checkpoint['best_loss']
            model.load_state_dict(checkpoint['state_dict'])
            logger.info(("=> loaded checkpoint '{}' (epoch {})".format(
                args.evaluate, checkpoint['epoch'])))
        else:
            logger.info(("=> no checkpoint found at '{}'".format(args.resume)))
    """construct dataset"""
    train_loader = torch.utils.data.DataLoader(
        PGCNDataSet(
            dataset_configs,
            graph_configs,
            prop_file=dataset_configs['train_prop_file'],
            prop_dict_path=dataset_configs['train_dict_path'],
            ft_path=dataset_configs['train_ft_path'],
            epoch_multiplier=dataset_configs['training_epoch_multiplier'],
            test_mode=False),
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
        drop_last=True)  # in training we drop the last incomplete minibatch

    val_loader = torch.utils.data.DataLoader(PGCNDataSet(
        dataset_configs,
        graph_configs,
        prop_file=dataset_configs['test_prop_file'],
        prop_dict_path=dataset_configs['val_dict_path'],
        ft_path=dataset_configs['test_ft_path'],
        epoch_multiplier=dataset_configs['testing_epoch_multiplier'],
        reg_stats=train_loader.dataset.stats,
        test_mode=False),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)
    """loss and optimizer"""
    activity_criterion = torch.nn.CrossEntropyLoss().cuda()
    completeness_criterion = CompletenessLoss().cuda()
    regression_criterion = ClassWiseRegressionLoss().cuda()

    for group in policies:
        logger.info(
            ('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
                group['name'], len(group['params']), group['lr_mult'],
                group['decay_mult'])))

    optimizer = torch.optim.SGD(policies,
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    if args.evaluate:
        validate(val_loader, model, activity_criterion, completeness_criterion,
                 regression_criterion, 0)
        return

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch, args.lr_steps)
        train(train_loader, model, activity_criterion, completeness_criterion,
              regression_criterion, optimizer, epoch)

        # evaluate on validation set
        if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
            loss = validate(val_loader, model, activity_criterion,
                            completeness_criterion, regression_criterion,
                            (epoch + 1) * len(train_loader))
            # remember best validation loss and save checkpoint
            is_best = loss < best_loss
            best_loss = min(loss, best_loss)
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict': model.state_dict(),
                    'best_loss': loss,
                    'reg_stats': torch.from_numpy(train_loader.dataset.stats)
                },
                is_best,
                epoch,
                filename='checkpoint.pth.tar')

    writer.close()
Beispiel #3
0
def runner_func(dataset, state_dict, stats, gpu_id, index_queue, result_queue,
                iou_dict, dis_dict):

    torch.cuda.set_device(gpu_id)
    net = PGCN(model_configs, graph_configs, test_mode=True)
    net.load_state_dict(state_dict)
    # net.prepare_test_fc()
    net.eval()
    net.cuda()

    while True:
        index = index_queue.get()

        rel_props, prop_ticks, video_id, n_frames = dataset[index]

        # calculate scores
        n_out = prop_ticks.size(0)
        act_scores = torch.zeros((n_out, num_class + 1)).cuda()
        comp_scores = torch.zeros((n_out, num_class)).cuda()

        if not args.no_regression:
            reg_scores = torch.zeros((n_out, num_class * 2)).cuda()
        else:
            reg_scores = None

        # load prop fts
        vid_full_name = video_id
        vid = vid_full_name.split('/')[-1]

        act_all_fts, comp_all_fts = I3D_Pooling(
            prop_ticks, vid, dataset_configs['test_ft_path'], n_frames)

        for prop_idx, prop in enumerate(prop_ticks):
            if prop_idx >= n_out:
                break
            with torch.no_grad():

                vid_iou_dict = iou_dict[vid]
                vid_dis_dict = dis_dict[vid]
                # print(len(vid_iou_dict), len(vid_dis_dict), len(prop_ticks))
                selected_idx = get_adjacent_batch(prop_idx, vid_iou_dict,
                                                  vid_dis_dict)
                selected_idx = torch.from_numpy(np.array(selected_idx))
                act_ft = act_all_fts[selected_idx, :]
                comp_ft = comp_all_fts[selected_idx, :]

                act_batch_var = act_ft.unsqueeze(0).cuda()
                comp_batch_var = comp_ft.unsqueeze(0).cuda()

                act_scores[prop_idx, :], comp_scores[prop_idx, :], \
                reg_scores[prop_idx, :] = net((act_batch_var, comp_batch_var), None, None, None)

        if reg_scores is not None:
            reg_scores = reg_scores.view(-1, num_class, 2)
            reg_scores[:, :,
                       0] = reg_scores[:, :, 0] * stats[1, 0] + stats[0, 0]
            reg_scores[:, :,
                       1] = reg_scores[:, :, 1] * stats[1, 1] + stats[0, 1]

        # perform stpp on scores
        result_queue.put((dataset.video_list[index].id, rel_props.numpy(),
                          act_scores.cpu().numpy(), comp_scores.cpu().numpy(),
                          reg_scores.cpu().numpy(), 0))
Beispiel #4
0
    train_dataset = PGCNDataSet(dataset_configs, graph_configs,
                    prop_file=dataset_configs['train_prop_file'],
                    prop_dict_path=dataset_configs['train_dict_path'],
                    ft_path=dataset_configs['train_ft_path'],
                    epoch_multiplier=dataset_configs['training_epoch_multiplier'],
                    mode='Train')
    train_loader = torch.utils.data.DataLoader(train_dataset,
        batch_size=4, shuffle=True,collate_fn=collate_fn,
        num_workers=4, pin_memory=True, drop_last=True)

    """construct model"""
    from pgcn_models import PGCN

    act_iou_dict, act_dis_dict = train_dataset.act_iou_dict, train_dataset.act_dis_dict
    model = PGCN(model_configs, graph_configs, act_iou_dict, act_dis_dict)
    policies = model.get_optim_policies()
    model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()

    activity_criterion = torch.nn.CrossEntropyLoss().cuda()
    completeness_criterion = CompletenessLoss().cuda()
    regression_criterion = ClassWiseRegressionLoss().cuda()

    for i, (batch_act_fts, batch_comp_fts, batch_props_type,
            batch_props_label, batch_reg_target, props_num_list, vid_list) in enumerate(tqdm(train_loader)):
        batch_size = batch_act_fts.size(0)
        activity_out, activity_target, activity_prop_type, \
        completeness_out, completeness_target, \
        regression_out, regression_labels, regression_target, ohem_num = model(batch_act_fts, batch_comp_fts, batch_props_type,
                                                                     batch_props_label, batch_reg_target,
                                                                     props_num_list, vid_list)