Beispiel #1
0
def main():
	    
    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)
    
    # Grab input args
    dataset = argv[1]
    use_odometry  =  True if int(argv[2]) else False
    seed =  int(argv[3]) if len(argv) > 3 else 0
    
	# Load the data from the file, ignoring timestamps
    _, lidars, odometries = load_data('.', dataset)
    
    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None
        
    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
           
    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)
    
    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()
    
    # Loop over scans    
    for scanno in range(nscans):
    
        if use_odometry:
                  
            # Convert odometry to velocities
            velocities = robot.computeVelocities(odometries[scanno])
                                 
            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)
            
        else:
        
            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()    
        
        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))
        
        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' % (nscans, elapsed_sec, nscans/elapsed_sec))
                    
                                
    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    
    # Get final map    
    slam.getmap(mapbytes)
    
    # Put trajectory into map as black pixels
    for coords in trajectory:
                
        x_mm, y_mm = coords
                               
        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)
                                                                                              
        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0;
                    
    # Save map and trajectory as PGM file    
    pgm_save('%s.pgm' % dataset, mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
Beispiel #2
0
def main():
	    
    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> <random_seed>' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)
    
    # Grab input args
    dataset = argv[1]
    use_odometry  =  True if int(argv[2]) else False
    seed =  int(argv[3]) if len(argv) > 3 else 0
    
	# Load the data from the file    
    lidars, odometries = load_data('.', dataset)
    
    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None
        
    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(URG04(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
           
    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)
    
    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()
    
    # Loop over scans    
    for scanno in range(nscans):
    
        if use_odometry:
                  
            # Convert odometry to velocities
            velocities = robot.computeVelocities(odometries[scanno])
                                 
            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)
            
        else:
        
            # Update SLAM with lidar alone
            slam.update(lidars[scanno])
                    
        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()    
        
        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))
        
        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' % (nscans, elapsed_sec, nscans/elapsed_sec))
                    
                                
    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    
    # Get final map    
    slam.getmap(mapbytes)
    
    # Put trajectory into map as black pixels
    for coords in trajectory:
                
        x_mm, y_mm = coords
                               
        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)
                                                                                              
        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0;
                    
    # Save map and trajectory as PGM file    
    pgm_save('%s.pgm' % dataset, mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
Beispiel #3
0
def slamThread():
    global SLAMrot
    global SLAMvel

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    viz = MapVisualizer(MAP_SIZE_PIXELS, MAP_SIZE_METERS, 'SLAM')

    # Initialize an empty trajectory
    trajectory = []

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Create an iterator to collect scan data from the RPLidar
    iterator = lidar.iter_scans()

    # We will use these to store previous scan in case current scan is inadequate
    previous_distances = None
    previous_angles    = None

    # First scan is crap, so ignore it
    next(iterator)

    # start time
    start_time = time.time()
    
    prevTime = start_time
    print("start")

    while True:

        # Extract (quality, angle, distance) triples from current scan
        items = [item for item in next(iterator)]

        # Extract distances and angles from triples
        distances = [item[2] for item in items]
        angles    = [item[1] for item in items]

        # Update SLAM with current Lidar scan and scan angles if adequate
        if len(distances) > MIN_SAMPLES:
            slam.update(distances, pose_change = ( (SLAMvel, SLAMrot, time.time() - prevTime)),scan_angles_degrees=angles)
            prevTime = time.time()
            previous_distances = copy.copy(distances)
            previous_angles    = copy.copy(angles)
            print("updated - if")
            print((SLAMvel, SLAMrot, time.time() - prevTime))

        # If not adequate, use previous
        elif previous_distances is not None:
            slam.update(previous_distances, pose_change = ( (SLAMvel, SLAMrot, time.time() - prevTime)),scan_angles_degrees=previous_angles)
            prevTime = time.time()
            print("updated - else")
            print((SLAMvel, SLAMrot, time.time() - prevTime))


        # Get current robot position
        x, y, theta = slam.getpos()
        # Add new position to trajectory
        trajectory.append((x, y))

        # Get current map bytes as grayscale
        slam.getmap(mapbytes)

        if(time.time() - start_time > 30):
    # Put trajectory into map as black pixels
            for coords in trajectory:
                        
                x_mm, y_mm = coords
                                       
                x_pix = mm2pix(x_mm)
                y_pix = mm2pix(y_mm)
                                                                                                      
                mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0;

            pgm_save('ok.pgm', mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
            exit(0)
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None
    lidarobj = Laser(360, 12, 360, 8000)

    # Create a CoreSLAM object with laser params and robot object
    slam = RMHC_SLAM(lidarobj, MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Start with an empty trajectory of positions
    trajectory = []
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    suffix = 1

    while (True):

        if (use_odometry):

            mutex.acquire()

            mainLCMQ = lcmQ
            mainODOQ = odoQ

            # Clear Queues once copied from thread into main for next batch of data
            lcmQ.queue.clear()
            odoQ.queue.clear()

            mutex.release()

            velocities = robot.computePoseChange(mainODOQ.get())
            slam.update(mainLCMQ.get(), velocities)
            x_mm, y_mm, theta_degrees = slam.getpos()

            x_pix = mm2pix(x_mm)
            y_pix = mm2pix(y_mm)

            trajectory.append((y_pix, x_pix))
            slam.getmap(mapbytes)

            trajLen = len(trajectory)

            for i in range(trajLen):
                if (i == (trajLen - 1)):
                    mapbytes[trajectory[i][0] * MAP_SIZE_PIXELS +
                             trajectory[i][1]] = 0
                else:
                    mapbytes[trajectory[i][0] * MAP_SIZE_PIXELS +
                             trajectory[i][1]] = 120

            filename = dataset + str(suffix)
            pgm_save('%s.pgm' % filename, mapbytes,
                     (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
            suffix += 1

            if (keyPressed == 's'):

                #Wrap up last map using leftover data
                pgm_save('%s.pgm' % filename, mapbytes,
                         (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
                '''
                This will take all the maps generated and place them into pgmbagfolder
                For this to work, make sure your destination directory has a folder called pgmbagfolder
                Change the directory:

                /home/Shaurya98/rplidar_workspace/src/mapping/BreezySLAM/examples
                and
                /home/Shaurya98/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder

                With your own destination directory. It it recommended to put pgmbagfolder under the examples
                directory
                '''

                os.chdir(
                    "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder"
                )
                for pgm_file in glob.iglob('*.pgm'):
                    os.remove(pgm_file)
                print("\nEmptied pgmbagfolder")

                os.chdir(
                    "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples"
                )

                for pgm_file in glob.iglob('*.pgm'):
                    shutil.copy2(
                        pgm_file,
                        "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder"
                    )
                    os.remove(pgm_file)

                print("\nFiles recorded and sent to pgmbagfolder")

                #Terminate threads before exiting main()
                thread1.join()
                thread2.join()
                thread3.join()

                break
Beispiel #5
0
            prevTime = time.time()
            previous_distances = copy.copy(distances)
            previous_angles = copy.copy(angles)
            print("updated - if")

        # If not adequate, use previous
        elif previous_distances is not None:
            slam.update(previous_distances,
                        pose_change=((40, 0, time.time() - prevTime)),
                        scan_angles_degrees=previous_angles)
            prevTime = time.time()
            print("updated - else")

        # Get current robot position
        x, y, theta = slam.getpos()

        # Get current map bytes as grayscale
        slam.getmap(mapbytes)

        if (time.time() - start_time > 5):
            pgm_save('ok.pgm', mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
            exit(0)

        # Display map and robot pose, exiting gracefully if user closes it
        # if not viz.display(x/1000., y/1000., theta, mapbytes):
        #     exit(0)

    # Shut down the lidar connection
    lidar.stop()
    lidar.disconnect()
Beispiel #6
0
def main():

    # Grab input args
    dataset = "testLidar"
    use_odometry = True
    seed = 0

    # Load the data from the file, ignoring timestamps
    lidars, velocities = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = RoboPorter() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(roboPorterLaser(),
                     MAP_SIZE_PIXELS,
                     MAP_SIZE_METERS,
                     random_seed=seed)  # \
    #if seed \
    #else Deterministic_SLAM(roboPorterLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        print(len(lidars[scanno]))
        # Convert odometry to velocities
        velocitity = velocities[
            scanno]  #dxyMillimeters, dthetaDegrees, dtSeconds

        # Update SLAM with lidar and velocities
        slam.update(lidars[scanno], velocitity)
        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Put trajectory into map as black pixels
    for coords in trajectory:

        x_mm, y_mm = coords

        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)

        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0

    # Save map and trajectory as PGM file
    pgm_save('%s.pgm' % dataset, mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
Beispiel #7
0
for chunk_row in range(num_chunks):
    for chunk_col in range(num_chunks):
        # begin current chunk
        sum = 0
        for sub_row in range(CHUNK_SIZE):
            for sub_col in range(CHUNK_SIZE):
                sum += bytemap[(chunk_row * CHUNK_SIZE + sub_row) * MAP_SIZE +
                               (chunk_col * CHUNK_SIZE + sub_col)]
        avg = sum // (CHUNK_SIZE * CHUNK_SIZE)
        if (avg < 127):
            avg = 0
        compressed_map[(chunk_row * num_chunks) + chunk_col] = avg
        compressed_map_2d[chunk_row][chunk_col] = avg

# approx middle pixel
compressed_map[(SEARCH_ROW) * 80 + SEARCH_COL] = 0

# raw distance search from given point
outuple = search()
if (outuple is not None):
    (dest_row, dest_col) = outuple
    print(dest_row, dest_col)
    compressed_map[dest_row * num_chunks + dest_col] = 0
else:
    print("None found")

#print(compressed_map)
pgm_save('../resources/compressed_map.pgm', compressed_map,
         (num_chunks, num_chunks))