Beispiel #1
0
    for i, t in enumerate(time_array):
        if 10 <= t <= 110: I[i] = 1e-3*(a+b*ii)  # nA->uA  --- Fig S1b
    DepolarisePhotoreceptor.WithLight(photoreceptor, V = V_membrane)

    V_array, g_Ch = Experiment.inject_current(photoreceptor,I,dt)
    plt.ylabel_set = False
    ax = plt.subplot(2,1,1)
    ax.plot(time_array, V_array,color='black') #mV
    ax.set_title('Hodgkin-Huxley voltage (top) and conductances (bottom)')
    plt.ylabel('Potential (mV)')
    ax.set_xticklabels([])
    ax = plt.subplot(2,1,2)
    ax.plot(time_array, g_Ch[0]*1e6,color='blue') #Fast conductance, nS
    ax.plot(time_array, g_Ch[1]*1e6,color='red') #Slow conductance, nS
    plt.xlabel('Time (msec)')
    plt.ylabel('Conductances (nS)')

    Experiment.freeze_conductances(photoreceptor)

    V_array, g_Ch = Experiment.inject_current(photoreceptor,I,dt)
    ax = plt.subplot(2,1,1)
    ax.plot(time_array, V_array,'k--') #mV
    ax.set_xticklabels([])
    ax = plt.subplot(2,1,2)
    ax.plot(time_array, g_Ch[0]*1e6,'b--') #Fast conductance, nS
    ax.plot(time_array, g_Ch[1]*1e6,'r--') #Slow conductance, nS

    Experiment.unfreeze_conductances(photoreceptor)


plt.show()
Beispiel #2
0
    DepolarisePhotoreceptor.WithLight(HH, V)

    gain_max[i], Bandwidth[i] = Gain_Bandwidth(HH.body.voltage_contrast_gain,
                                               f_min=f_medium)
    gain = abs(HH.body.voltage_contrast_gain(f))
    gain_bandwidth_product[i] = gain_max[i] * Bandwidth[i]

    Experiment.freeze_conductances(HH)

    gain_max_fixed[i], Bandwidth_fixed[i] = Gain_Bandwidth(
        HH.body.voltage_contrast_gain, f_min=f_medium)
    gain_fixed = abs(HH.body.voltage_contrast_gain(f))
    gain_bandwidth_product_fixed[i] = gain_max_fixed[i] * Bandwidth_fixed[i]

    Experiment.unfreeze_conductances(HH)

    ax_bwprod.plot(V,
                   gain_bandwidth_product[i],
                   colour_graph[i] + '.',
                   markersize=15)
    ax_bwprod.plot(V,
                   gain_bandwidth_product_fixed[i],
                   colour_graph[i] + '.',
                   markersize=15)

    if V > V_rest:
        ax_RC_gain.loglog(f,
                          gain,
                          colour_graph[i],
                          linewidth=2,
Beispiel #3
0
I = zeros_like(time_array)

for ii,V_membrane in enumerate(V_membrane_) :
    for i, t in enumerate(time_array):
        if 10 <= t <= 160: I[i] = 1e-3*(0.01)  # nA->uA
    DepolarisePhotoreceptor.WithLight(drosophila, V = V_membrane)

    V_array, g_Ch = Experiment.inject_current(drosophila,I,dt)
    ax = fig1.add_subplot(3,1,ii+1)
    ax.plot(time_array, V_array,color='black') #mV

    #Experiment.unfreeze_conductances(drosophila)

    DepolarisePhotoreceptor.WithLight(drosophila, V = V_membrane) #To make sure that all channels are back at rest

    Experiment.freeze_inactivations(drosophila)
    V_array, g_Ch = Experiment.inject_current(drosophila,I,dt)
    Experiment.unfreeze_inactivations(drosophila)
    ax.plot(time_array, V_array,'k:') #mV

    DepolarisePhotoreceptor.WithLight(drosophila, V = V_membrane) #To make sure that all channels are back at rest

    Experiment.freeze_conductances(drosophila)
    V_array, g_Ch = Experiment.inject_current(drosophila,I,dt)
    Experiment.unfreeze_conductances(drosophila)
    ax.plot(time_array, V_array,'k--') #mV

    ax.set_ylim(plot_window + V_membrane)

show()