Beispiel #1
0
def test_offset():
    A = pg.cross(length=10, width=3, layer=0)
    B = pg.ellipse(radii=(10, 5), angle_resolution=2.5, layer=1)
    D = pg.offset([A, B],
                  distance=0.1,
                  join_first=True,
                  precision=0.001,
                  layer=2)
    h = D.hash_geometry(precision=1e-4)
    assert (h == 'dea81b4adf9f163577cb4c750342f5f50d4fbb6d')
Beispiel #2
0
def test_offset():
    A = pg.cross(length=10, width=3, layer=0)
    B = pg.ellipse(radii=(10, 5), angle_resolution=2.5, layer=1)
    D = pg.offset([A, B],
                  distance=0.1,
                  join_first=True,
                  precision=0.001,
                  max_points=4000,
                  layer=2)
    h = D.hash_geometry(precision=1e-4)
    assert (h == 'bd4b9182042522fa00b5ddb49d182523b4bf9eb5')
def global_markers(layer_marker=10, layer_mask=20):
    D = Device('Global Markers')
    R = pg.rectangle(size=(20, 20), layer=1)
    a = D.add_array(R, columns=6, rows=6, spacing=(100, 100))
    a.move([-260, -260])  #Center of the array

    R = pg.rectangle(size=(20, 20), layer=1)
    a = D.add_array(R, columns=6, rows=6, spacing=(100, 100))
    a.move([-260, -260])  #Center of the array

    #Add marker cover
    cover = pg.bbox(bbox=a.bbox, layer=layer_mask)
    D << pg.offset(cover, distance=100, layer=layer_mask)
    return D
Beispiel #4
0
def test_resistance(
    pad_size=[50, 50],
    num_squares=1000,
    width=1,
    res_layer=0,
    pad_layer=None,
    gnd_layer=None,
):

    """ meander to test resistance
    from phidl.geometry

    Args:
        pad_size: Size of the two matched impedance pads (microns)
        num_squares: Number of squares comprising the resonator wire
        width: The width of the squares (microns)
        res_layer:
        pad_layer:
        gnd_layer:

    .. plot::
      :include-source:

      import pp

      c = pp.c.test_resistance()
      pp.plotgds(c)

    """

    x = pad_size[0]
    z = pad_size[1]

    # Checking validity of input
    if x <= 0 or z <= 0:
        raise ValueError("Pad must have positive, real dimensions")
    elif width > z:
        raise ValueError("Width of cell cannot be greater than height of pad")
    elif num_squares <= 0:
        raise ValueError("Number of squares must be a positive real number")
    elif width <= 0:
        raise ValueError("Width of cell must be a positive real number")

    # Performing preliminary calculations
    num_rows = int(np.floor(z / (2 * width)))
    if num_rows % 2 == 0:
        num_rows -= 1
    num_columns = num_rows - 1
    squares_in_row = (num_squares - num_columns - 2) / num_rows

    # Compensating for weird edge cases
    if squares_in_row < 1:
        num_rows = round(num_rows / 2) - 2
        squares_in_row = 1
    if width * 2 > z:
        num_rows = 1
        squares_in_row = num_squares - 2

    length_row = squares_in_row * width

    # Creating row/column corner combination structure
    T = pp.Component()
    Row = pc.rectangle(size=(length_row, width), layer=res_layer)
    Col = pc.rectangle(size=(width, width), layer=res_layer)

    T.add_ref(Row)
    col = T.add_ref(Col)
    col.move([length_row - width, -width])

    # Creating entire waveguide net
    N = pp.Component("net")
    n = 1
    for i in range(num_rows):
        if i != num_rows - 1:
            d = N.add_ref(T)
        else:
            d = N.add_ref(Row)
        if n % 2 == 0:
            d.reflect(p1=(d.x, d.ymax), p2=(d.x, d.ymin))
        d.movey(-(n - 1) * T.ysize)
        n += 1
    d = N.add_ref(Col).movex(-width)
    d = N.add_ref(Col).move([length_row, -(n - 2) * T.ysize])

    # Creating pads
    P = pp.Component()
    Pad1 = pc.rectangle(size=(x, z), layer=pad_layer)
    Pad2 = pc.rectangle(size=(x + 5, z), layer=pad_layer)
    Gnd1 = offset(Pad1, distance=-5, layer=gnd_layer)
    Gnd2 = offset(Pad2, distance=-5, layer=gnd_layer)
    pad1 = P.add_ref(Pad1).movex(-x - width)
    pad2 = P.add_ref(Pad1).movex(length_row + width)
    P.add_ref(Gnd1).center = pad1.center
    gnd2 = P.add_ref(Gnd2)
    P.add_ref(N).y = pad1.y
    gnd2.center = pad2.center
    gnd2.movex(2.5)

    return P
Beispiel #5
0
D = pg.C(width = 7, size = (10,20) , layer = 0)
qp(D) # quickplot the geometry
create_image(D, 'C')

# example-offset
import phidl.geometry as pg
from phidl import quickplot as qp
from phidl import Device

# Create `T`, an ellipse and rectangle which will be offset (expanded / contracted)
T = Device()
e = T << pg.ellipse(radii = (10,5), layer = 1)
r = T << pg.rectangle(size = [15,5], layer = 2)
r.move([3,-2.5])

Texpanded = pg.offset(T, distance = 2, join_first = True, precision = 1e-6, 
        num_divisions = [1,1], layer = 0)
Tshrink = pg.offset(T, distance = -1.5, join_first = True, precision = 1e-6, 
        num_divisions = [1,1], layer = 0)

# Plot the original geometry, the expanded, and the shrunk versions
D = Device()
t1 = D.add_ref(T)
t2 = D.add_ref(Texpanded)
t3 = D.add_ref(Tshrink)
D.distribute([t1,t2,t3], direction = 'x', spacing = 5)
qp(D) # quickplot the geometry
create_image(D, 'offset')

# example-invert
import phidl.geometry as pg
from phidl import quickplot as qp
def resistance_meander(
    pad_size: Tuple[float] = (50.0, 50.0),
    num_squares: int = 1000,
    width: float = 1.0,
    res_layer: Tuple[int, int] = LAYER.M3,
    pad_layer: Tuple[int, int] = LAYER.M3,
    gnd_layer: Tuple[int, int] = LAYER.M3,
) -> Component:
    """meander to test resistance
    from phidl.geometry

    Args:
        pad_size: Size of the two matched impedance pads (microns)
        num_squares: Number of squares comprising the resonator wire
        width: The width of the squares (microns)
        res_layer:
        pad_layer:
        gnd_layer:

    """

    x = pad_size[0]
    z = pad_size[1]

    # Checking validity of input
    if x <= 0 or z <= 0:
        raise ValueError("Pad must have positive, real dimensions")
    elif width > z:
        raise ValueError("Width of cell cannot be greater than height of pad")
    elif num_squares <= 0:
        raise ValueError("Number of squares must be a positive real number")
    elif width <= 0:
        raise ValueError("Width of cell must be a positive real number")

    # Performing preliminary calculations
    num_rows = int(np.floor(z / (2 * width)))
    if num_rows % 2 == 0:
        num_rows -= 1
    num_columns = num_rows - 1
    squares_in_row = (num_squares - num_columns - 2) / num_rows

    # Compensating for weird edge cases
    if squares_in_row < 1:
        num_rows = round(num_rows / 2) - 2
        squares_in_row = 1
    if width * 2 > z:
        num_rows = 1
        squares_in_row = num_squares - 2

    length_row = squares_in_row * width

    # Creating row/column corner combination structure
    T = Component()
    Row = pc.rectangle(size=(length_row, width), layer=res_layer)
    Col = pc.rectangle(size=(width, width), layer=res_layer)

    T.add_ref(Row)
    col = T.add_ref(Col)
    col.move([length_row - width, -width])

    # Creating entire straight net
    N = Component("net")
    n = 1
    for i in range(num_rows):
        if i != num_rows - 1:
            d = N.add_ref(T)
        else:
            d = N.add_ref(Row)
        if n % 2 == 0:
            d.reflect(p1=(d.x, d.ymax), p2=(d.x, d.ymin))
        d.movey(-(n - 1) * T.ysize)
        n += 1
    d = N.add_ref(Col).movex(-width)
    d = N.add_ref(Col).move([length_row, -(n - 2) * T.ysize])

    # Creating pads
    P = Component()
    pad1 = pc.rectangle(size=(x, z), layer=pad_layer)
    pad2 = pc.rectangle(size=(x + 5, z), layer=pad_layer)
    gnd1 = offset(pad1, distance=-5, layer=gnd_layer)
    gnd2 = offset(pad2, distance=-5, layer=gnd_layer)
    pad1_ref = P.add_ref(pad1)
    pad1_ref.movex(-x - width)
    pad2_ref = P.add_ref(pad1)
    pad2_ref.movex(length_row + width)
    gnd1_ref = P.add_ref(gnd1)
    gnd1_ref.center = pad1_ref.center
    gnd2_ref = P.add_ref(gnd2)
    net = P.add_ref(N)
    net.y = pad1_ref.y
    gnd2_ref.center = pad2_ref.center
    gnd2_ref.movex(2.5)
    P.absorb(net)
    P.absorb(gnd1_ref)
    P.absorb(gnd2_ref)
    P.absorb(pad1_ref)
    P.absorb(pad2_ref)
    return P