Beispiel #1
0
def comp(theta, xx):
    resid_old = []
    resid_new = []
    A_old = np.zeros([T, M, NN], dtype=complex)
    A_new = np.zeros([T, M, NN], dtype=complex)
    theta_matrix = np.diag(theta)
    for t in range(T):
        # A[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        A_old[t] = Hd[t]
        A_new[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        # print(A_new[t].shape)
        y_old = np.zeros([T, M, 1], dtype=complex)
        y_new = np.zeros([T, M, 1], dtype=complex)

        for t in range(T):
            y_old[t] = np.dot(A_old[t], xx[t])
            y_new[t] = np.dot(A_new[t], xx[t])

        x_array_old, resid_array_old = pa.PIA_ASP(y_old, A_old, sp=0)
        x_array_new, resid_array_new = pa.PIA_ASP(y_new, A_new, sp=0)

        print('resid_old', resid_array_old[-1] / np.linalg.norm(A_old[t]))
        print('resid_new', resid_array_new[-1] / np.linalg.norm(A_new[t]))

        return resid_array_old[-1] / np.linalg.norm(
            A_old[t]), resid_array_new[-1] / np.linalg.norm(A_new[t])
Beispiel #2
0
def comp(theta, xx, num):
    A_old = np.zeros([T, M, NN], dtype=complex)
    A_new = np.zeros([T, M, NN], dtype=complex)
    theta_matrix = np.diag(theta)
    for t in range(T):
        # A[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        A_old[t] = Hd[t]
        # 这个应该是由theta_optimization 来决定的  A_new[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        A_new[t] = np.dot(np.dot(G[t, :, 0:num], theta_matrix),
                          Hr[t, 0:num, :]) + Hd[t]
        y_old = np.zeros([T, M, 1], dtype=complex)
        y_new = np.zeros([T, M, 1], dtype=complex)

        for t in range(T):
            y_old[t] = np.dot(A_old[t], xx[t])
            y_new[t] = np.dot(A_new[t], xx[t])
        before = time.time()
        x_array_old, resid_array_old = pa.PIA_ASP(y_old, A_old, sp=50)
        after = time.time()
        print('old', after - before)
        before = time.time()
        x_array_new, resid_array_new = pa.PIA_ASP(y_new, A_new, sp=50)
        after = time.time()
        print('new', after - before)
        resid_old = resid_array_old[-1]
        resid_new = resid_array_new[-1]

        # print('resid_old', resid_array_old[-1] / np.linalg.norm(A_old[t]))
        # print('resid_new', resid_array_new[-1] / np.linalg.norm(A_new[t]))
        # print('resid_old', resid_array_old[-1] / np.linalg.norm(y_old[t]))
        # print('resid_new', resid_array_new[-1] / np.linalg.norm(y_new[t]))
        return resid_array_old[-1] / np.linalg.norm(
            y_old[t]), resid_array_new[-1] / np.linalg.norm(y_new[t])
Beispiel #3
0
def comp(theta, xx):
    A_old = np.zeros([T, M, NN], dtype=complex)
    A_new = np.zeros([T, M, NN], dtype=complex)
    theta_matrix = np.diag(theta)
    for t in range(T):
        # A[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        A_old[t] = Hd[t]
        # 这个应该是由theta_optimization 来决定的  A_new[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        A_new[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        # print(A_new[t].shape)
        y_old = np.zeros([T, M, 1], dtype=complex)
        y_new = np.zeros([T, M, 1], dtype=complex)

        for t in range(T):
            y_old[t] = np.dot(A_old[t], xx[t])
            y_new[t] = np.dot(A_new[t], xx[t])

        x_array_old, resid_array_old = pa.PIA_ASP(y_old, A_old, sp=0)
        x_array_new, resid_array_new = pa.PIA_ASP(y_new, A_new, sp=0)
        resid_old = resid_array_old[-1]
        resid_new = resid_array_new[-1]

        print('resid_old', resid_array_old[-1] / np.linalg.norm(A_old[t]))
        print('resid_new',
              resid_array_new[-1] / np.linalg.norm(A_new[t]),
              end='\t')
Beispiel #4
0
def optimize(n, x, t, the, theta_w, theta_record):
    min_sum = 999
    min_theta = 0
    theta_matrix = np.zeros([N, N], dtype=complex)
    for i in range(N):
        theta_matrix[i][i] = math.cos(the[i]) + 1j * math.sin(the[i])

    for th in theta_array:
        theta_matrix[n][n] = th
        A = np.zeros([T, M, NN], dtype=complex)
        for t in range(T):
            A[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        # print(A.shape)
        y = np.zeros([T, M, 1], dtype=complex)
        for t in range(T):
            y[t] = np.dot(A[t], (x[t] + sigma[t]))
        np.savetxt('/Users/xfn/Downloads/cvx/projects/data/sigma.csv',
                   sigma[0],
                   delimiter=',')
        # print(y.shape)
        x_array, resid_array = pa.PIA_ASP(y, A, sp=0)
        # print(resid_array)
        sum_else = XL[n] * abs(th - theta_w[n]) + (
            rho + L) / 2 * np.linalg.norm(th - theta_w[n])
        # sum_else = XL[n] * (th - theta_w[n]) + (rho + L) / 2 * np.linalg.norm(th - theta_w[n])
        # sum_else = 0
        # print(resid_array[-1])
        # print('sum_else', sum_else)
        if resid_array[-1] + sum_else < min_sum:
            # if sum_else < min_sum:
            min_sum = resid_array[-1] + sum_else
            # min_sum = sum_else
            min_theta = th
        # A = np.dot(np.dot(G, np.diag(theta)), Hr) + Hd
        # sumthetan = 0
        # for i in range(M):
        #     sumthetan += derivativeTheta(i, n, x, t) * derivativeTheta(i, n, x, t)
        #
        # sumthetan += XL[n] * (theta_wan - theta) + (rho + L) / 2 * np.linalg.norm(theta_wan - theta)
    return min_theta
Beispiel #5
0
def optimize(n, x, t, the, theta_w, theta_record, num):
    min_sum = 999
    min_theta = 0
    theta_matrix = np.zeros([num, num], dtype=complex)
    for i in range(num):
        theta_matrix[i][i] = math.cos(the[i]) + 1j * math.sin(the[i])

    for th in theta_array:
        theta_matrix[n][n] = th
        A = np.zeros([T, M, NN], dtype=complex)

        for t in range(T):
            A[t] = np.dot(np.dot(G[t, :, 0:num], theta_matrix),
                          Hr[t, 0:num, :]) + Hd[t]  # print(A.shape)
        y = np.zeros([T, M, 1], dtype=complex)
        for t in range(T):
            y[t] = np.dot(A[t], x[t])
        # print(y.shape)
        x_array, resid_array = pa.PIA_ASP(y, A, sp=50)
        # print(resid_array)
        sum_else = XL[n] * abs(th - theta_w[n]) + (
            rho + L) / 2 * np.linalg.norm(th - theta_w[n])
        # sum_else = XL[n] * (th - theta_w[n]) + (rho + L) / 2 * np.linalg.norm(th - theta_w[n])
        # sum_else = 0
        # print(resid_array[-1])
        # print('sum_else', sum_else)
        if resid_array[-1] + sum_else < min_sum:
            # if sum_else < min_sum:
            min_sum = resid_array[-1] + sum_else
            # min_sum = sum_else
            min_theta = th
        # A = np.dot(np.dot(G, np.diag(theta)), Hr) + Hd
        # sumthetan = 0
        # for i in range(M):
        #     sumthetan += derivativeTheta(i, n, x, t) * derivativeTheta(i, n, x, t)
        #
        # sumthetan += XL[n] * (theta_wan - theta) + (rho + L) / 2 * np.linalg.norm(theta_wan - theta)
    return min_theta
Beispiel #6
0
KK = 20
Hr = np.random.uniform(low=1e-6, high=1e-4, size=[T, N, NN])
Hd = np.random.uniform(low=1e-13, high=1e-10, size=[T, M, NN])
G = np.random.uniform(low=1e-8, high=1e-6, size=[T, M, N])
x = np.load('x.npy')
theta_opt = np.load('theta.npy')
theta_matrix = np.diag(theta_opt)

if __name__ == "__main__":
    # x = dataset.setRelativity(NN, T, K, KK)

    A_old = np.zeros([T, M, NN], dtype=complex)
    A_new = np.zeros([T, M, NN], dtype=complex)
    for t in range(T):
        # A[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        A_old[t] = Hd[t]
        #这个应该是由theta_optimization 来决定的  A_new[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        A_new[t] = np.dot(np.dot(G[t], theta_matrix), Hr[t]) + Hd[t]
        y_old = np.zeros([T, M, 1], dtype=complex)
        y_new = np.zeros([T, M, 1], dtype=complex)

        for t in range(T):
            y_old[t] = np.dot(A_old[t], x[t])
            y_new[t] = np.dot(A_new[t], x[t])

        x_array_old, resid_array_old = pa.PIA_ASP(y_old, A_old, sp=50)
        x_array_new, resid_array_new = pa.PIA_ASP(y_new, A_new, sp=50)

        print('resid_old', resid_array_old[-1])
        print('resid_new', resid_array_new[-1])