Beispiel #1
0
    def evaluate(self,
                 data_stream,
                 train=False,
                 file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            y_val = inputs['phonemes']
            drops_forw_states_val = inputs['drops_forw_states']
            drops_forw_cells_val = inputs['drops_forw_cells']
            drops_forw_igates_val = inputs['drops_forw_igates']
            drops_back_states_val = inputs['drops_back_states']
            drops_back_cells_val = inputs['drops_back_cells']
            drops_back_igates_val = inputs['drops_back_igates']
            y_mask_val = inputs['phonemes_mask']
            y_hat = self.prediction_func(
                x_val, x_mask_val, drops_forw_states_val, drops_forw_cells_val,
                drops_forw_igates_val, drops_back_states_val,
                drops_back_cells_val, drops_back_igates_val)
            y_predict = numpy.argmax(y_hat, axis=2)
            for batch in xrange(inputs['features'].shape[1]):
                y_val_cur = y_val[:sum(y_mask_val[:, batch]), batch]
                predicted = y_predict[:sum(x_mask_val[:, batch]), batch]
                predicted = ctc_strip(predicted)
                predictions = [
                    self.phoneme_dict[phone_ind] for phone_ind in predicted
                    if self.phoneme_dict[phone_ind] not in self.black_list
                ]
                targets = [
                    self.phoneme_dict[phone_ind] for phone_ind in y_val_cur
                    if self.phoneme_dict[phone_ind] not in self.black_list
                ]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' % i)

                loss += Evaluation.wer([predictions], [targets])
                num_examples += 1

            print '.. found sequence example:', ' '.join(predictions)
            print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        per = loss.sum() / num_examples
        return {'per': per}
    def evaluate(self, data_stream, train=False, file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            y_val = inputs['phonemes']
            y_mask_val = inputs['phonemes_mask']
            for batch_ind in xrange(inputs['features'].shape[1]):
                if x_val.ndim == 2:
                    input_beam = numpy.tile(x_val[:, batch_ind][:, None],
                        (1, self.beam_size))
                else:
                    input_beam = numpy.tile(x_val[:, batch_ind, :][:, None, :],
                                            (1, self.beam_size, 1))
                input_mask_beam = numpy.tile(x_mask_val[:, batch_ind][:, None],
                                             (1, self.beam_size))
                predictions, _ = self.beam_search.search(
                    {self.x: input_beam,
                     self.x_mask: input_mask_beam},
                    self.eol_symbol, 100)
                predictions = [self.phoneme_dict[phone_ind] for phone_ind
                             in predictions[0]
                             if self.phoneme_dict[phone_ind] not in
                             self.black_list][1:-1]

                targets = y_val[:sum(y_mask_val[:, batch_ind]), batch_ind]
                targets = [self.phoneme_dict[phone_ind] for phone_ind
                             in targets
                             if self.phoneme_dict[phone_ind] not in
                             self.black_list][1:-1]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' %i)

                loss += Evaluation.wer([predictions], [targets])
                num_examples += 1

            print '.. found sequence example:', ' '.join(predictions)
            print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        per = loss.sum() / num_examples
        return {'per': per}
    def evaluate(self, data_stream, train=False, file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            #transpose
            y_val = inputs['phonemes']
            y_mask_val = inputs['phonemes_mask']
            y_hat = self.prediction_func(x_val, x_mask_val)
            y_predict = numpy.argmax(y_hat, axis=2)
            for batch in xrange(inputs['features'].shape[0]):
                y_val_cur = y_val[:sum(y_mask_val[:, batch]), batch]
                predicted = y_predict[:sum(x_mask_val[:, batch]), batch]
                predicted = ctc_strip(predicted)
                predictions = [self.phoneme_dict[phone_ind] for phone_ind
                               in predicted
                               if self.phoneme_dict[phone_ind] not in
                               self.black_list]
                targets = [self.phoneme_dict[phone_ind] for phone_ind
                           in y_val_cur
                           if self.phoneme_dict[phone_ind] not in
                           self.black_list]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' %i)

                loss += Evaluation.wer([predictions], [targets])
                num_examples += 1

            print '.. found sequence example:', ' '.join(predictions)
            print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        per = loss.sum() / num_examples
        return {'per': per}
Beispiel #4
0
    def evaluate(self,
                 data_stream,
                 train=False,
                 file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            y_val = inputs['triphones']
            y_mask_val = inputs['triphones_mask']
            y_hat = self.prediction_func(x_val, x_mask_val)
            y_predict = numpy.argmax(y_hat, axis=2)
            for batch in xrange(inputs['features'].shape[1]):
                y_val_cur = y_val[:sum(y_mask_val[:, batch]), batch]
                predicted = y_predict[:sum(x_mask_val[:, batch]), batch]
                predictions = [str(trihone) for triphone in predicted]
                targets = [str(triphone) for triphone in y_val_cur]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' % i)

                loss += (sum(numpy.not_equal(y_val_cur,
                                             predicted))).astype(
                                                     'float32') /\
                                                             len(predicted)
                num_examples += 1

            #print '.. found sequence example:', ' '.join(predictions)
            #print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        fer = loss / num_examples
        return {'fer': fer}
    def evaluate(self, data_stream, train=False, file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            y_val = inputs['triphones']
            y_mask_val = inputs['triphones_mask']
            y_hat = self.prediction_func(x_val, x_mask_val)
            y_predict = numpy.argmax(y_hat, axis=2)
            for batch in xrange(inputs['features'].shape[1]):
                y_val_cur = y_val[:sum(y_mask_val[:, batch]), batch]
                predicted = y_predict[:sum(x_mask_val[:, batch]), batch]
                predictions = [str(trihone) for triphone in predicted]
                targets = [str(triphone) for triphone in y_val_cur]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' %i)

                loss += (sum(numpy.not_equal(y_val_cur,
                                             predicted))).astype(
                                                     'float32') /\
                                                             len(predicted)
                num_examples += 1

            #print '.. found sequence example:', ' '.join(predictions)
            #print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        fer = loss / num_examples
        return {'fer': fer}
Beispiel #6
0
def verify_groupby(*args, **kwargs):
    if 'n' in kwargs:
        if 'm' not in kwargs:
            raise ValueError('got n without m')
        pickle = True
        n = kwargs.pop('n')
        m = kwargs.pop('m')
    elif 'm' in kwargs:
        raise ValueError('got m without n')
    else:
        pickle = False
        n = m = None
    if 'pickle_outer' in kwargs:
        pickle_outer = kwargs.pop('pickle_outer')
    else:
        pickle_outer = None
    reference = itertools.groupby(*args, **kwargs)
    actual = groupby(*args, **kwargs)
    outer_iters = 0
    while True:
        if outer_iters == pickle_outer:
            actual = cPickle.loads(cPickle.dumps(actual))
        try:
            ref_key, ref_grouper = next(reference)
        except StopIteration:
            check_stops(actual)
            break
        try:
            actual_key, actual_grouper = next(actual)
        except StopIteration:
            assert False, "prematurely exhausted; expected {}".format(ref_key)
        if pickle:
            this_n = n[0]
            n = n[1:]
            this_m = m[0]
            m = m[1:]
            verify_pickle(partial(_identity, actual_grouper),
                          partial(_identity, ref_grouper), this_n, this_m)

        else:
            verify_same(partial(_identity, actual_grouper),
                        partial(_identity, ref_grouper), None)
        outer_iters += 1
def verify_groupby(*args, **kwargs):
    if 'n' in kwargs:
        if 'm' not in kwargs:
            raise ValueError('got n without m')
        pickle = True
        n = kwargs.pop('n')
        m = kwargs.pop('m')
    elif 'm' in kwargs:
        raise ValueError('got m without n')
    else:
        pickle = False
        n = m = None
    if 'pickle_outer' in kwargs:
        pickle_outer = kwargs.pop('pickle_outer')
    else:
        pickle_outer = None
    reference = itertools.groupby(*args, **kwargs)
    actual = groupby(*args, **kwargs)
    outer_iters = 0
    while True:
        if outer_iters == pickle_outer:
            actual = cPickle.loads(cPickle.dumps(actual))
        try:
            ref_key, ref_grouper = next(reference)
        except StopIteration:
            check_stops(actual)
            break
        try:
            actual_key, actual_grouper = next(actual)
        except StopIteration:
            assert False, "prematurely exhausted; expected {}".format(ref_key)
        if pickle:
            this_n = n[0]
            n = n[1:]
            this_m = m[0]
            m = m[1:]
            verify_pickle(partial(_identity, actual_grouper),
                          partial(_identity, ref_grouper), this_n, this_m)

        else:
            verify_same(partial(_identity, actual_grouper),
                        partial(_identity, ref_grouper), None)
        outer_iters += 1
Beispiel #8
0
def network_evaluation(predict_fn,
                       data_stream,
                       phoneme_dict,
                       black_list):
    #####################
    # get data iterator #
    #####################
    data_iterator = data_stream.get_epoch_iterator()

    #########################
    # set evaluation result #
    #########################
    total_ctc = 0.
    total_per = 0.
    total_sample = 0.
    total_batch = 0.

    ##############
    # evaluation #
    ##############
    # for each batch iteration
    for i, data in enumerate(data_iterator):
        # get input data
        input_data = data[0]
        input_mask = data[1]

        # get target data
        target_data = data[2]
        target_mask = data[3]

        # get prediction data
        predict_output = predict_fn(input_data,
                                    input_mask,
                                    target_data,
                                    target_mask)
        predict_idx = predict_output[0]
        predict_ctc_cost = predict_output[1]
        pred_cost_per_char = predict_output[2]

        # add up ctc cost
        total_ctc += predict_ctc_cost
        total_batch += 1.

        # for each data, per evaluation
        for j in range(input_data.shape[0]):
            cur_target_data = target_data[j, :numpy.sum(target_mask[j])]
            cur_predict_data = predict_idx[j, :numpy.sum(input_mask[j])]
            cur_predict_data = ctc_strip(cur_predict_data)

            cur_target_phoneme = [phoneme_dict[phone_ind] for phone_ind in cur_target_data if phoneme_dict[phone_ind] not in black_list]
            cur_predict_phoneme = [phoneme_dict[phone_ind] for phone_ind in cur_predict_data if phoneme_dict[phone_ind] not in black_list]

            targets = [x[0] for x in groupby(cur_target_phoneme)]
            predictions = [x[0] for x in groupby(cur_predict_phoneme)]
            total_per += Evaluation.wer([predictions], [targets])
            total_sample += 1

    total_ctc = total_ctc/total_batch
    total_per = total_per.sum()/total_sample

    return total_ctc, total_per
Beispiel #9
0
    def evaluate(self,
                 data_stream,
                 train=False,
                 file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            y_val = inputs['phonemes']
            y_mask_val = inputs['phonemes_mask']
            for batch_ind in xrange(inputs['features'].shape[1]):
                if x_val.ndim == 2:
                    input_beam = numpy.tile(x_val[:, batch_ind][:, None],
                                            (1, self.beam_size))
                else:
                    input_beam = numpy.tile(x_val[:, batch_ind, :][:, None, :],
                                            (1, self.beam_size, 1))
                input_mask_beam = numpy.tile(x_mask_val[:, batch_ind][:, None],
                                             (1, self.beam_size))
                predictions, _ = self.beam_search.search(
                    {
                        self.x: input_beam,
                        self.x_mask: input_mask_beam
                    }, self.eol_symbol, 100)
                predictions = [
                    self.phoneme_dict[phone_ind]
                    for phone_ind in predictions[0]
                    if self.phoneme_dict[phone_ind] not in self.black_list
                ][1:-1]

                targets = y_val[:sum(y_mask_val[:, batch_ind]), batch_ind]
                targets = [
                    self.phoneme_dict[phone_ind] for phone_ind in targets
                    if self.phoneme_dict[phone_ind] not in self.black_list
                ][1:-1]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' % i)

                loss += Evaluation.wer([predictions], [targets])
                num_examples += 1

            print '.. found sequence example:', ' '.join(predictions)
            print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        per = loss.sum() / num_examples
        return {'per': per}