def authenticate_by_token(self): """ Attempt to authenticate GDrive v3 API using saved token (if one exists) """ logger.debug(f'Attempting to authenticate by token @ {self.token_path} ...') # The file token.pickle stores the user's access and refresh tokens, and is created automatically when the # authorization flow completes for the first time. if os.path.isfile(self.token_path): with open(self.token_path, 'rb') as token: try: credentials = p_load(token) if credentials.expired and credentials.refresh_token: logger.debug('Refreshing expired credentials ...') credentials.refresh(Request()) if credentials.valid: self.credentials = credentials return True except AttributeError as ex: logger.debug(f'Unable to unserialize {self.token_path} as {Credentials.__class__.__qualname__}') raise ex elif os.path.isdir(self.token_path): raise IsADirectoryError(f'Serialized token file was expected. \'{self.token_path}\' is a directory') elif not os.path.exists(self.token_path): raise FileNotFoundError(f'Serialized token file was expected. No such file: \'{self.token_path}\'') return False
def load_cls(filename): """ Load classifier from file """ with open(filename, 'rb') as output: cls = p_load(output) return cls
def load_model(file_name): """ Wrapper for pickle.load. File object was created from the string :param file_name: name of file where the model is saved :return: the model """ with open(file_name, 'rb') as file: classifier = p_load(file) return classifier
def load(self, path: str) -> None: """ load neural network state dictionary :param path: full path for state dictionary file """ if self._dtype is 'DQN': self.policy_net.load_state_dict(load(path)) self.policy_net.eval() elif self._dtype is 'DQN': file = open(path, 'rb') self._q = p_load(file) file.close()
from flask import request, Flask, render_template from flask_pymongo import PyMongo from joblib import dump, load import numpy as np from sklearn import preprocessing from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.linear_model import LinearRegression from pickle import load as p_load mlr_model = load('mlr_model.joblib') # load scaler scaler = p_load(open('scaler.pkl', 'rb')) # from flask import Flask app = Flask(__name__) # model = pickle.load(open('model.pkl', 'rb')) col=['neighborhood','total_area','overallqual','garagecars','fullbath','yearbuilt','yearremodadd'] @app.route("/") def index(): return render_template("index.html") @app.route('/predict', methods=['POST', 'GET']) def predict(): int_features = [int(x) for x in request.form.values()] final = np.array(int_features, dtype=float).reshape(1, -1) final_scaled = scaler.transform(final) prediction=mlr_model.predict(final_scaled) prediction=np.exp(prediction)
def __init__(self): #INITIALIZE AND SHOW GUI... super(Main, self).__init__() self.ui=CC_Main() self.ui.setupUi(self) self.ui.lineEdit.setText("Programmer") self.ui.lineEdit_3.setText("Toronto") self.ui.tableWidget.addFuncPointers({"getProfileData": self.getProfileData}) self.show() #Used to keep the log from being finalized multiple times... self.run_once = 0 self.widgets_on = True #Keep track of which positions are valid for automation... self.good_list = [] self.complex_list = [] self.bad_list = [] #See if saved data exists, and load if it does... fin = None try: fin = open("./data/past_app_sessions.pickle", "rb") log.append("Found previous application history data! loading into memory...", entity="main") except: log.append("No previous application history data found... skipping load.", entity="main") if fin != None: container = p_load(fin) self.good_list = container['good_list'] self.complex_list = container['complex_list'] self.bad_list = container['bad_list'] self.last_row = -1 log.append('Initializing...') #Redirect STDOUT and STDERR self.redir = StdRedir(log) self.ui.logWidget.loadConnection(self.redir.stdout_receiver.new_data) self.ui.logWidget.setLog(log) self.ui.tableWidget.setLog(log) self.redir.startThreads() #SETUP SIGNALS/SLOTS... self.ui.pushButton_2.clicked.connect(self.do_search) self.ui.pushButton_4.clicked.connect(self.applyToSelected) self.ui.lineEdit.returnPressed.connect(self.do_search) self.ui.lineEdit_3.returnPressed.connect(self.do_search) self.ui.newStyleButton.clicked.connect(self.ui.tableWidget._newStyle) app.aboutToQuit.connect(self.closingCode) #SETUP *CUSTOM* WORKERTHEAD SIGNALS self.worker = WorkerThread("*****@*****.**", "unkQRXen9", log) self.worker.search_complete.connect(self.process_search) self.worker.profiling_complete.connect(self.ui.tableWidget.setRowData) self.worker.job_tasks.connect(self.ui.loadBar.prepLoadBar) self.worker.task_complete.connect(self.ui.loadBar.updateLoadBar) self.worker.finished.connect(self.release_widgets) self.worker.submission_complete.connect(self.done_application) #LOGIN TO SITE! self.lockout_widgets() self.worker.start() log.append('Initialization Complete!') #Set focus to the search button initially... self.ui.pushButton_2.setFocus()
def img_from_pickle(fp: str) -> Image: with open(fp, 'rb') as pf: return Image.fromarray(p_load(pf))