def test_fit_predict_2_layers_clf(self): model = Stack([layer_width2_clf, layer_width1_clf]) X = np.array([[1, 1], [1, 1], [0, 0], [0, 0]]) y = np.array([1, 1, 0, 0]) model.fit(X, y) result = model.predict(np.array([[1, 1]])) assert result.shape == (1,) assert np.allclose(result, np.array([1]))
def test_fit_predict_2_layers_reg(self): model = Stack([layer_width2_reg, layer_width1_reg]) X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 model.fit(X, y) result = model.predict(np.array([[3, 5],[3, 5]])) assert result.shape == (2,) assert np.allclose(result, np.array([16, 16]))
def test_fit_predict_stack_with_sklearn_folds(self): model = Stack([layer_width2_reg, layer_width1_reg], folds=KFold(2)) X = np.array([[1, 1], [1, 2], [2, 2], [2, 3], [1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 model.fit(X, y) result = model.predict(np.array([[3, 5], [3, 5]])) assert result.shape == (2, ) assert np.allclose(result, np.array([16, 16]))
def test_stack_copy_function_only_model(self): first_layer = Layer([LinearRegression(), LogisticRegression()]) second_layer = Layer([LinearRegression()]) model = Stack([first_layer, second_layer]) X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 model.fit(X, y) model2 = model.copy() gotError = False try: model2.predict([1, 2]) except (NotFittedError): gotError = True assert gotError, "Model failed the copy Test: When copying, a deep copy was produced"