Beispiel #1
0
def test_fitter_respects_pulse_numbers(fitter, model, fake_toas):
    t = fake_toas
    delta_f = (1 / (t.last_MJD - t.first_MJD)).to(u.Hz)

    # Unchanged model, fitting should be trivial
    f_0 = fitter(t, model, track_mode="use_pulse_numbers")
    f_0.fit_toas()
    assert abs(f_0.model.F0.quantity - model.F0.quantity) < 0.01 * delta_f

    m_2 = deepcopy(model)
    m_2.F0.quantity += 2 * delta_f
    m_2.free_params = ["F0"]

    # Check fitter with and without tracking
    with pytest.raises(ValueError):
        fitter(t, m_2, track_mode="capybara")

    f_1 = fitter(t, m_2, track_mode="nearest")
    try:
        f_1.fit_toas()
        assert abs(f_1.model.F0.quantity - model.F0.quantity) > 0.1 * delta_f
    except ValueError:
        # convergence fails for Downhill fitters
        pass

    f_2 = fitter(t, m_2, track_mode="use_pulse_numbers")
    f_2.fit_toas()
    assert abs(f_2.model.F0.quantity - model.F0.quantity) < 0.01 * delta_f
Beispiel #2
0
def test_random_models(fitter):
    # Get model and TOAs
    m, t = get_model_and_toas(os.path.join(datadir, "NGC6440E.par"),
                              os.path.join(datadir, "NGC6440E.tim"))

    f = fitter(toas=t, model=m)
    # Do a 4-parameter fit
    f.model.free_params = ("F0", "F1", "RAJ", "DECJ")
    f.fit_toas()

    # this contains TOAs up through 54200
    # make new ones starting there
    tnew = simulation.make_fake_toas_uniform(54200, 59000, 59000 - 54200,
                                             f.model)
    dphase, mrand = simulation.calculate_random_models(f, tnew, Nmodels=30)

    # this is a bit stochastic, but I see typically < 0.14 cycles
    # for the uncertainty at 59000
    assert np.all(dphase.std(axis=0) < 0.2)

    # redo it with only F0 free
    dphase_F, mrand_F = simulation.calculate_random_models(f,
                                                           tnew,
                                                           Nmodels=100,
                                                           params=["F0"])

    # this should be less than the fully free version
    assert dphase_F.std(axis=0).max() < dphase.std(axis=0).max()
Beispiel #3
0
def test_random_models_wb(fitter):
    model = get_model(
        os.path.join(datadir, "J1614-2230_NANOGrav_12yv3.wb.gls.par"))
    toas = get_TOAs(
        os.path.join(datadir, "J1614-2230_NANOGrav_12yv3.wb.tim"),
        ephem="DE436",
        bipm_version="BIPM2015",
    )
    f = fitter(toas, model)
    # Do a 4-parameter fit
    f.model.free_params = ("F0", "F1", "ELONG", "ELAT")
    f.fit_toas()

    tnew = simulation.make_fake_toas_uniform(54200, 59000,
                                             (59000 - 54200) // 10, f.model)
    dphase, mrand = simulation.calculate_random_models(f, tnew, Nmodels=30)

    # this is a bit stochastic, but I see typically < 1e-4 cycles for this
    # for the uncertainty at 59000
    assert np.all(dphase.std(axis=0) < 1e-4)