Beispiel #1
0
def test_gmsd_modes(x, y, device: str) -> None:
    for reduction in ['mean', 'sum', 'none']:
        gmsd(x.to(device), y.to(device), reduction=reduction)

    for reduction in ['DEADBEEF', 'random']:
        with pytest.raises(ValueError):
            gmsd(x.to(device), y.to(device), reduction=reduction)
Beispiel #2
0
def test_gmsd_modes(prediction: torch.Tensor, target: torch.Tensor, device: str) -> None:
    for reduction in ['mean', 'sum', 'none']:
        gmsd(prediction.to(device), target.to(device), reduction=reduction)

    for reduction in ['DEADBEEF', 'random']:
        with pytest.raises(KeyError):
            gmsd(prediction.to(device), target.to(device), reduction=reduction)
Beispiel #3
0
def test_gmsd_supports_different_data_ranges(prediction: torch.Tensor, target: torch.Tensor, device: str) -> None:
    prediction_255 = (prediction * 255).type(torch.uint8)
    target_255 = (target * 255).type(torch.uint8)
    measure = gmsd(prediction.to(device), target.to(device))

    measure_255 = gmsd(prediction_255.to(device), target_255.to(device), data_range=255)
    diff = torch.abs(measure_255 - measure)
    assert diff <= 1e-4, f'Result for same tensor with different data_range should be the same, got {diff}'
Beispiel #4
0
def test_gmsd_supports_different_data_ranges(x, y, data_range, device: str) -> None:
    x_scaled = (x * data_range).type(torch.uint8)
    y_scaled = (y * data_range).type(torch.uint8)
    measure_scaled = gmsd(x_scaled.to(device), y_scaled.to(device), data_range=data_range)
    measure = gmsd(
        x_scaled.to(device) / float(data_range),
        y_scaled.to(device) / float(data_range),
        data_range=1.0
    )
    diff = torch.abs(measure_scaled - measure)
    assert diff <= 1e-6, f'Result for same tensor with different data_range should be the same, got {diff}'
Beispiel #5
0
def test_gmsd_supports_different_data_ranges(
        prediction: torch.Tensor, target: torch.Tensor, data_range, device: str) -> None:
    prediction_scaled = (prediction * data_range).type(torch.uint8)
    target_scaled = (target * data_range).type(torch.uint8)
    measure_scaled = gmsd(prediction_scaled.to(device), target_scaled.to(device), data_range=data_range)
    measure = gmsd(
        prediction_scaled.to(device) / float(data_range),
        target_scaled.to(device) / float(data_range),
        data_range=1.0
    )
    diff = torch.abs(measure_scaled - measure)
    assert diff <= 1e-6, f'Result for same tensor with different data_range should be the same, got {diff}'
Beispiel #6
0
def test_gmsd_compare_with_matlab(input_images_score: Tuple[torch.Tensor,
                                                            torch.Tensor,
                                                            torch.Tensor],
                                  device: str) -> None:
    x, y, y_value = input_images_score
    score = gmsd(x=x.to(device), y=y.to(device), data_range=255)
    assert torch.isclose(score, y_value.to(score)), f'The estimated value must be equal to MATLAB provided one, ' \
                                                    f'got {score.item():.8f}, while MATLAB equals {y_value}'
Beispiel #7
0
def test_gmsd_supports_greyscale_tensors(device: str) -> None:
    y = torch.ones(2, 1, 96, 96)
    x = torch.zeros(2, 1, 96, 96)
    gmsd(x.to(device), y.to(device))
Beispiel #8
0
def test_gmsd_supports_greyscale_tensors(device: str) -> None:
    target = torch.ones(2, 1, 96, 96)
    prediction = torch.zeros(2, 1, 96, 96)
    gmsd(prediction.to(device), target.to(device))
Beispiel #9
0
def test_gmsd_raises_if_tensors_have_different_types(target: torch.Tensor, device: str) -> None:
    wrong_type_predictions = [list(range(10)), np.arange(10)]
    for wrong_type_prediction in wrong_type_predictions:
        with pytest.raises(AssertionError):
            gmsd(wrong_type_prediction, target.to(device))
Beispiel #10
0
def test_gmsd_forward(prediction: torch.Tensor, target: torch.Tensor, device: str) -> None:
    gmsd(prediction.to(device), target.to(device))
Beispiel #11
0
def test_gmsd_zero_for_equal_tensors(prediction: torch.Tensor, device: str) -> None:
    target = prediction.clone()
    measure = gmsd(prediction.to(device), target.to(device))
    assert measure.abs() <= 1e-6, f'GMSD for equal tensors must be 0, got {measure}'
Beispiel #12
0
def test_gmsd_preserves_dtype(x, y, dtype, device: str) -> None:
    output = gmsd(x.to(device=device, dtype=dtype),
                  y.to(device=device, dtype=dtype))
    assert output.dtype == dtype
Beispiel #13
0
def main():
    # Read RGB image and it's noisy version
    x = torch.tensor(imread('tests/assets/i01_01_5.bmp')).permute(2, 0,
                                                                  1) / 255.
    y = torch.tensor(imread('tests/assets/I01.BMP')).permute(2, 0, 1) / 255.

    if torch.cuda.is_available():
        # Move to GPU to make computaions faster
        x = x.cuda()
        y = y.cuda()

    # To compute BRISQUE score as a measure, use lower case function from the library
    brisque_index: torch.Tensor = piq.brisque(x,
                                              data_range=1.,
                                              reduction='none')
    # In order to use BRISQUE as a loss function, use corresponding PyTorch module.
    # Note: the back propagation is not available using torch==1.5.0.
    # Update the environment with latest torch and torchvision.
    brisque_loss: torch.Tensor = piq.BRISQUELoss(data_range=1.,
                                                 reduction='none')(x)
    print(
        f"BRISQUE index: {brisque_index.item():0.4f}, loss: {brisque_loss.item():0.4f}"
    )

    # To compute Content score as a loss function, use corresponding PyTorch module
    # By default VGG16 model is used, but any feature extractor model is supported.
    # Don't forget to adjust layers names accordingly. Features from different layers can be weighted differently.
    # Use weights parameter. See other options in class docstring.
    content_loss = piq.ContentLoss(feature_extractor="vgg16",
                                   layers=("relu3_3", ),
                                   reduction='none')(x, y)
    print(f"ContentLoss: {content_loss.item():0.4f}")

    # To compute DISTS as a loss function, use corresponding PyTorch module
    # By default input images are normalized with ImageNet statistics before forwarding through VGG16 model.
    # If there is no need to normalize the data, use mean=[0.0, 0.0, 0.0] and std=[1.0, 1.0, 1.0].
    dists_loss = piq.DISTS(reduction='none')(x, y)
    print(f"DISTS: {dists_loss.item():0.4f}")

    # To compute FSIM as a measure, use lower case function from the library
    fsim_index: torch.Tensor = piq.fsim(x, y, data_range=1., reduction='none')
    # In order to use FSIM as a loss function, use corresponding PyTorch module
    fsim_loss = piq.FSIMLoss(data_range=1., reduction='none')(x, y)
    print(
        f"FSIM index: {fsim_index.item():0.4f}, loss: {fsim_loss.item():0.4f}")

    # To compute GMSD as a measure, use lower case function from the library
    # This is port of MATLAB version from the authors of original paper.
    # In any case it should me minimized. Usually values of GMSD lie in [0, 0.35] interval.
    gmsd_index: torch.Tensor = piq.gmsd(x, y, data_range=1., reduction='none')
    # In order to use GMSD as a loss function, use corresponding PyTorch module:
    gmsd_loss: torch.Tensor = piq.GMSDLoss(data_range=1., reduction='none')(x,
                                                                            y)
    print(
        f"GMSD index: {gmsd_index.item():0.4f}, loss: {gmsd_loss.item():0.4f}")

    # To compute HaarPSI as a measure, use lower case function from the library
    # This is port of MATLAB version from the authors of original paper.
    haarpsi_index: torch.Tensor = piq.haarpsi(x,
                                              y,
                                              data_range=1.,
                                              reduction='none')
    # In order to use HaarPSI as a loss function, use corresponding PyTorch module
    haarpsi_loss: torch.Tensor = piq.HaarPSILoss(data_range=1.,
                                                 reduction='none')(x, y)
    print(
        f"HaarPSI index: {haarpsi_index.item():0.4f}, loss: {haarpsi_loss.item():0.4f}"
    )

    # To compute LPIPS as a loss function, use corresponding PyTorch module
    lpips_loss: torch.Tensor = piq.LPIPS(reduction='none')(x, y)
    print(f"LPIPS: {lpips_loss.item():0.4f}")

    # To compute MDSI as a measure, use lower case function from the library
    mdsi_index: torch.Tensor = piq.mdsi(x, y, data_range=1., reduction='none')
    # In order to use MDSI as a loss function, use corresponding PyTorch module
    mdsi_loss: torch.Tensor = piq.MDSILoss(data_range=1., reduction='none')(x,
                                                                            y)
    print(
        f"MDSI index: {mdsi_index.item():0.4f}, loss: {mdsi_loss.item():0.4f}")

    # To compute MS-SSIM index as a measure, use lower case function from the library:
    ms_ssim_index: torch.Tensor = piq.multi_scale_ssim(x, y, data_range=1.)
    # In order to use MS-SSIM as a loss function, use corresponding PyTorch module:
    ms_ssim_loss = piq.MultiScaleSSIMLoss(data_range=1., reduction='none')(x,
                                                                           y)
    print(
        f"MS-SSIM index: {ms_ssim_index.item():0.4f}, loss: {ms_ssim_loss.item():0.4f}"
    )

    # To compute Multi-Scale GMSD as a measure, use lower case function from the library
    # It can be used both as a measure and as a loss function. In any case it should me minimized.
    # By defualt scale weights are initialized with values from the paper.
    # You can change them by passing a list of 4 variables to scale_weights argument during initialization
    # Note that input tensors should contain images with height and width equal 2 ** number_of_scales + 1 at least.
    ms_gmsd_index: torch.Tensor = piq.multi_scale_gmsd(x,
                                                       y,
                                                       data_range=1.,
                                                       chromatic=True,
                                                       reduction='none')
    # In order to use Multi-Scale GMSD as a loss function, use corresponding PyTorch module
    ms_gmsd_loss: torch.Tensor = piq.MultiScaleGMSDLoss(chromatic=True,
                                                        data_range=1.,
                                                        reduction='none')(x, y)
    print(
        f"MS-GMSDc index: {ms_gmsd_index.item():0.4f}, loss: {ms_gmsd_loss.item():0.4f}"
    )

    # To compute PSNR as a measure, use lower case function from the library.
    psnr_index = piq.psnr(x, y, data_range=1., reduction='none')
    print(f"PSNR index: {psnr_index.item():0.4f}")

    # To compute PieAPP as a loss function, use corresponding PyTorch module:
    pieapp_loss: torch.Tensor = piq.PieAPP(reduction='none', stride=32)(x, y)
    print(f"PieAPP loss: {pieapp_loss.item():0.4f}")

    # To compute SSIM index as a measure, use lower case function from the library:
    ssim_index = piq.ssim(x, y, data_range=1.)
    # In order to use SSIM as a loss function, use corresponding PyTorch module:
    ssim_loss: torch.Tensor = piq.SSIMLoss(data_range=1.)(x, y)
    print(
        f"SSIM index: {ssim_index.item():0.4f}, loss: {ssim_loss.item():0.4f}")

    # To compute Style score as a loss function, use corresponding PyTorch module:
    # By default VGG16 model is used, but any feature extractor model is supported.
    # Don't forget to adjust layers names accordingly. Features from different layers can be weighted differently.
    # Use weights parameter. See other options in class docstring.
    style_loss = piq.StyleLoss(feature_extractor="vgg16",
                               layers=("relu3_3", ))(x, y)
    print(f"Style: {style_loss.item():0.4f}")

    # To compute TV as a measure, use lower case function from the library:
    tv_index: torch.Tensor = piq.total_variation(x)
    # In order to use TV as a loss function, use corresponding PyTorch module:
    tv_loss: torch.Tensor = piq.TVLoss(reduction='none')(x)
    print(f"TV index: {tv_index.item():0.4f}, loss: {tv_loss.item():0.4f}")

    # To compute VIF as a measure, use lower case function from the library:
    vif_index: torch.Tensor = piq.vif_p(x, y, data_range=1.)
    # In order to use VIF as a loss function, use corresponding PyTorch class:
    vif_loss: torch.Tensor = piq.VIFLoss(sigma_n_sq=2.0, data_range=1.)(x, y)
    print(f"VIFp index: {vif_index.item():0.4f}, loss: {vif_loss.item():0.4f}")

    # To compute VSI score as a measure, use lower case function from the library:
    vsi_index: torch.Tensor = piq.vsi(x, y, data_range=1.)
    # In order to use VSI as a loss function, use corresponding PyTorch module:
    vsi_loss: torch.Tensor = piq.VSILoss(data_range=1.)(x, y)
    print(f"VSI index: {vsi_index.item():0.4f}, loss: {vsi_loss.item():0.4f}")
Beispiel #14
0
def test_gmsd_fails_for_incorrect_data_range(prediction: torch.Tensor, target: torch.Tensor, device: str) -> None:
    # Scale to [0, 255]
    prediction_scaled = (prediction * 255).type(torch.uint8)
    target_scaled = (target * 255).type(torch.uint8)
    with pytest.raises(AssertionError):
        gmsd(prediction_scaled.to(device), target_scaled.to(device), data_range=1.0)
Beispiel #15
0
def test_gmsd_fails_for_incorrect_data_range(x, y, device: str) -> None:
    # Scale to [0, 255]
    x_scaled = (x * 255).type(torch.uint8)
    y_scaled = (y * 255).type(torch.uint8)
    with pytest.raises(AssertionError):
        gmsd(x_scaled.to(device), y_scaled.to(device), data_range=1.0)
Beispiel #16
0
def test_gmsd_forward(x, y, device: str) -> None:
    gmsd(x.to(device), y.to(device))
Beispiel #17
0
def test_gmsd_raises_if_tensors_have_different_types(y, device: str) -> None:
    wrong_type_x = [list(range(10)), np.arange(10)]
    for wrong_type_x in wrong_type_x:
        with pytest.raises(AssertionError):
            gmsd(wrong_type_x, y.to(device))
Beispiel #18
0
def test_gmsd_zero_for_equal_tensors(x, device: str) -> None:
    y = x.clone()
    measure = gmsd(x.to(device), y.to(device))
    assert measure.abs() <= 1e-6, f'GMSD for equal tensors must be 0, got {measure}'