def align(groupid, dat):
    res = []
    translations = []

    for i, group in enumerate(zip(*dat)):

        if i == 0:
            # We want to look at everything for the title
            left_border = 0
        else:
            # Skip the voting target for the rest
            #left_border = 80
            left_border = 0

        Iref_orig = sh.standardImread(group[0], flatten=True)
        Iref = Iref_orig[:, left_border:]
        r = []
        r_img = []

        for i in range(len(group)):
            I_orig = sh.standardImread(group[i], flatten=True)
            I = I_orig[:, left_border:]
            Inorm = make_norm(I, Iref)

            (H, imres, err) = imagesAlign.imagesAlign(Inorm,
                                                      Iref,
                                                      trfm_type='translation')

            r_img.append((make_norm(I_orig, Iref_orig), H))
            r.append(translate(group[i]))

        translations.append(r_img)
        res.append(r)

    translated_images = []
    for contest in zip(*translations):
        c_res = []
        """
        print 'new'
        arr = np.zeros((3,3))
        for _,H in contest:
            arr += H
        arr /= len(contest)
        print arr
        """
        for img, H in contest:
            translated = sh.imtransform(np.copy(img), H, fillval=np.nan)
            align_res = np.nan_to_num(translated)
            c_res.append(align_res)
        translated_images.append(c_res)
    translated_images = zip(*translated_images)

    return res, translated_images
def align(groupid, dat):
    res = []
    translations = []
    
    for i,group in enumerate(zip(*dat)):

        if i == 0:
            # We want to look at everything for the title
            left_border = 0
        else:
            # Skip the voting target for the rest
            #left_border = 80
            left_border = 0
        
        Iref_orig=sh.standardImread(group[0],flatten=True)
        Iref = Iref_orig[:,left_border:]
        r = []
        r_img = []
    
        for i in range(len(group)):
            I_orig=sh.standardImread(group[i],flatten=True)
            I=I_orig[:,left_border:]
            Inorm = make_norm(I, Iref)
            
            (H,imres,err)=imagesAlign.imagesAlign(Inorm,Iref,trfm_type='translation')

            r_img.append((make_norm(I_orig, Iref_orig), H))
            r.append(translate(group[i]))

        translations.append(r_img)
        res.append(r)

    translated_images = []
    for contest in zip(*translations):
        c_res = []
        """
        print 'new'
        arr = np.zeros((3,3))
        for _,H in contest:
            arr += H
        arr /= len(contest)
        print arr
        """
        for img,H in contest:
            translated = sh.imtransform(np.copy(img), H, fillval=np.nan)
            align_res = np.nan_to_num(translated)
            c_res.append(align_res)
        translated_images.append(c_res)
    translated_images = zip(*translated_images)

    return res, translated_images
def cluster_imgpatchesV2(imgpaths, bb_map, init_clusters=None, THRESHOLD=0.95):
    """ Given a list of imgpaths, and bounding boxes for each image,
    cluster the bounding boxes from each image.
    Input:
        list imgpaths:
        dict bb_map: maps {str imgpath: (y1,y2,x1,x2)}
        list init_clusters: An initial set of cluster centers, of the form:
            {imgpath_i: (imgpath_i, bb_i)}
        float THRESHOLD: A cutoff value to use when determining if the patch
            was found. Ranges from [0.0, 1.0], where higher values is 'stricter',
            i.e. THRESHOLD=1.0 means only accept exact matches (not recommended).
            Higher values also means more computation time.
    Output:
        A dict of the form:
            {c_imgpath: [(imgpath_i, bb_i, score), ...}
        where each c_imgpath is the 'center' of a given cluster C.
    """
    clusters = {}
    unlabeled_imgpaths = list(imgpaths)
    while unlabeled_imgpaths:
        curimgpath = unlabeled_imgpaths.pop()
        bb = bb_map[curimgpath]
        I = shared.standardImread(curimgpath, flatten=True)
        _t = time.time()
        print "...calling find_patch_matchesV1..."
        matches = partask.do_partask(findpatchmatches,
                                     unlabeled_imgpaths,
                                     _args=(I,
                                            bb,
                                            bb, THRESHOLD))
        print "...finished find_patch_matchesV1 ({0} s)".format(time.time() - _t)
        # Manually add in I
        matches.append((curimgpath, -1.0, 1.0, None, bb[0], bb[1], bb[2], bb[3], 1.0))
        if matches:
            # 0.) Retrieve best matches from matches (may have multiple
            # matches for the same imagepath)
            print "...number of pre-filtered matches: {0}".format(len(matches))
            bestmatches = {} # maps {imgpath: (imgpath,sc1,sc2,Ireg,y1,y2,x1,x2,rszFac)}
            for (filename,sc1,sc2,Ireg,y1,y2,x1,x2,rszFac) in matches:
                y1, y2, x1, x2 = map(lambda c: int(round(c/rszFac)), (y1, y2, x1, x2))
                if filename not in bestmatches:
                    bestmatches[filename] = (filename,sc1,sc2,y1,y2,x1,x2,rszFac)
                else:
                    old_sc2 = bestmatches[filename][2]
                    if sc2 < old_sc2:
                        bestmatches[filename] = (filename,sc1,sc2,y1,y2,x1,x2,rszFac)
            print "...found {0} matches".format(len(bestmatches))
            # 1.) Handle the best matches
            for _, (filename,sc1,sc2,y1,y2,x1,x2,rszFac) in bestmatches.iteritems():
                if filename in unlabeled_imgpaths:
                    unlabeled_imgpaths.remove(filename)
                clusters.setdefault(curimgpath, []).append((filename, (y1,y2,x1,x2), sc2))
        else:
            print "...Uh oh, no matches found. This shouldnt' have \
happened."
            pdb.set_trace()
    print "...Completed clustering. Found {0} clusters.".format(len(clusters))
    return clusters
 def distance2(img, imgpath2):
     """ L2 norm between img1, img2 """
     img2 = shared.standardImread(imgpath2, flatten=True)
     bb2 = bb_map.get(imgpath2, None)
     if bb2 != None:
         img2 = img2[bb2[0]:bb2[1], bb2[2]:bb2[3]]
     img2 = common.resize_img_norescale(img2, (img.shape[1], img.shape[0]))
     diff = np.linalg.norm(img - img2)
     return diff
Beispiel #5
0
 def distance2(img, imgpath2):
     """ L2 norm between img1, img2 """
     img2 = shared.standardImread(imgpath2, flatten=True)
     bb2 = bb_map.get(imgpath2, None)
     if bb2 != None:
         img2 = img2[bb2[0]:bb2[1], bb2[2]:bb2[3]]
     img2 = common.resize_img_norescale(img2, (img.shape[1], img.shape[0]))
     diff = np.linalg.norm(img - img2)
     return diff
 def distance3(img, imgpath2):
     """ NCC score between img1, img2. """
     imgCv = cv.fromarray(np.copy(img.astype(np.float32)))
     img2 = shared.standardImread(imgpath2, flatten=True)
     bb2 = bb_map.get(imgpath2, None)
     if bb2 != None:
         img2 = img2[bb2[0]:bb2[2], bb2[2]:bb2[3]]
     img2Cv = cv.fromarray(np.copy(img2.astype(np.float32)))
     outCv = cv.CreateMat(imgCv.height - img2Cv.height+1, imgCv.width - img2Cv.width+1,
                          imgCv.type)
     cv.MatchTemplate(imgCv, img2Cv, outCv, cv.CV_TM_CCOEFF_NORMED)
     return outCv.max()
Beispiel #7
0
 def distance3(img, imgpath2):
     """ NCC score between img1, img2. """
     imgCv = cv.fromarray(np.copy(img.astype(np.float32)))
     img2 = shared.standardImread(imgpath2, flatten=True)
     bb2 = bb_map.get(imgpath2, None)
     if bb2 != None:
         img2 = img2[bb2[0]:bb2[2], bb2[2]:bb2[3]]
     img2Cv = cv.fromarray(np.copy(img2.astype(np.float32)))
     outCv = cv.CreateMat(imgCv.height - img2Cv.height + 1,
                          imgCv.width - img2Cv.width + 1, imgCv.type)
     cv.MatchTemplate(imgCv, img2Cv, outCv, cv.CV_TM_CCOEFF_NORMED)
     return outCv.max()
Beispiel #8
0
def do_aligning(imgpaths, outdir, idx):
    Iref_imgP = imgpaths.pop(idx)
    Iref_np = scipy.misc.imread(Iref_imgP, flatten=True)
    Iref = shared.standardImread(Iref_imgP, flatten=True)

    Iref_crop = cropout_stuff(Iref, 0.2, 0.2, 0.2, 0.2)

    Iouts = global_align(Iref_crop, imgpaths)

    ref_dir = os.path.join(outdir, 'ref')

    try:
        os.makedirs(ref_dir)
    except:
        pass

    Iref_imgname = os.path.split(Iref_imgP)[1]
    scipy.misc.imsave(os.path.join(ref_dir, Iref_imgname), Iref)

    for imgpath, H, Ireg_crop, err in Iouts:
        print "For imgpath {0}, err={1:.4f}, H:".format(imgpath, err)
        imgname = os.path.splitext(os.path.split(imgpath)[1])[0]
        I = scipy.misc.imread(imgpath, flatten=True)
        Hc = correctH(Ireg_crop, H)
        print Hc
        rot_H = Hc[:2, :2]
        trans_H = Hc[:2, 2]
        """
        Note: imagesAlign's H is of the form:
            [a b X]
            [c d Y]
        where positive Y means go down, and positive X means to right (as usual).
        scipy's affine_transform's offset should be offset=(y,x), but where
            positive y is go UP, and positive x is to the LEFT.
        """
        #Itrans = scipy.ndimage.interpolation.affine_transform(I, rot_H,
        #                                                      offset=(-trans_H[1], -trans_H[0]),
        #                                                      output_shape=I.shape)
        #Icv = cv.LoadImageM(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
        #Icv_trans = cv.CreateMat(Icv.rows, Icv.cols, Icv.type)
        #H_cv = cv.fromarray(Hc.astype(np.float32)[:2,:])
        #cv.WarpAffine(Icv, Icv_trans, H_cv)
        #Itrans = np.asarray(Icv)
        Itrans = imtransform(I, H)
        Itrans = np.nan_to_num(Itrans)

        outP = os.path.join(outdir, "{0}_err{1:.4f}.png".format(imgname, err))
        Ioverlay = np.zeros(Itrans.shape)
        Ioverlay[:, :] = Itrans
        Ioverlay[:, :] += Iref_np
        scipy.misc.imsave(outP, Ioverlay)
 def closest_label(imgpath, exemplars):
     mindist = None
     bestmatch = None
     img = shared.standardImread(imgpath, flatten=True)
     bb = bb_map.get(imgpath, None)
     if bb != None:
         img = img[bb[0]:bb[1], bb[2]:bb[3]]
     for label, imgpaths in exemplars.iteritems():
         for imgpathB in imgpaths:
             dist = distance2(img, imgpathB)
             if mindist == None or dist < mindist:
                 bestmatch = label
                 mindist = dist
     return bestmatch, mindist
def do_aligning(imgpaths, outdir, idx):
    Iref_imgP = imgpaths.pop(idx)
    Iref_np = scipy.misc.imread(Iref_imgP, flatten=True)
    Iref = shared.standardImread(Iref_imgP, flatten=True)

    Iref_crop = cropout_stuff(Iref, 0.2, 0.2, 0.2, 0.2)

    Iouts = global_align(Iref_crop, imgpaths)

    ref_dir = os.path.join(outdir, 'ref')

    try:
        os.makedirs(ref_dir)
    except: pass

    Iref_imgname = os.path.split(Iref_imgP)[1]
    scipy.misc.imsave(os.path.join(ref_dir, Iref_imgname), Iref)

    for imgpath, H, Ireg_crop, err in Iouts:
        print "For imgpath {0}, err={1:.4f}, H:".format(imgpath, err)
        imgname = os.path.splitext(os.path.split(imgpath)[1])[0]
        I = scipy.misc.imread(imgpath, flatten=True)
        Hc = correctH(Ireg_crop, H)
        print Hc
        rot_H = Hc[:2, :2]
        trans_H = Hc[:2,2]
        """
        Note: imagesAlign's H is of the form:
            [a b X]
            [c d Y]
        where positive Y means go down, and positive X means to right (as usual).
        scipy's affine_transform's offset should be offset=(y,x), but where
            positive y is go UP, and positive x is to the LEFT.
        """
        #Itrans = scipy.ndimage.interpolation.affine_transform(I, rot_H, 
        #                                                      offset=(-trans_H[1], -trans_H[0]),
        #                                                      output_shape=I.shape)
        #Icv = cv.LoadImageM(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
        #Icv_trans = cv.CreateMat(Icv.rows, Icv.cols, Icv.type)
        #H_cv = cv.fromarray(Hc.astype(np.float32)[:2,:])
        #cv.WarpAffine(Icv, Icv_trans, H_cv)
        #Itrans = np.asarray(Icv)
        Itrans = imtransform(I, H)
        Itrans = np.nan_to_num(Itrans)
        
        outP = os.path.join(outdir, "{0}_err{1:.4f}.png".format(imgname, err))
        Ioverlay = np.zeros(Itrans.shape)
        Ioverlay[:,:] = Itrans
        Ioverlay[:,:] += Iref_np
        scipy.misc.imsave(outP, Ioverlay)
Beispiel #11
0
 def closest_label(imgpath, exemplars):
     mindist = None
     bestmatch = None
     img = shared.standardImread(imgpath, flatten=True)
     bb = bb_map.get(imgpath, None)
     if bb != None:
         img = img[bb[0]:bb[1], bb[2]:bb[3]]
     for label, imgpaths in exemplars.iteritems():
         for imgpathB in imgpaths:
             dist = distance2(img, imgpathB)
             if mindist == None or dist < mindist:
                 bestmatch = label
                 mindist = dist
     return bestmatch, mindist
Beispiel #12
0
 def closest_label(imgpath, bb, exemplars):
     bestlabel = None
     mindist = None
     bbBest = None
     img = shared.standardImread(imgpath, flatten=True)
     for label, tuples in exemplars.iteritems():
         imgpaths2, bbs2 = [], []
         for imgpath2, bb2 in tuples:
             imgpaths2.append(imgpath2)
             bbs2.append(bb2)
         closestdist, bbOut = get_closest_ncclk(imgpath, img, bb, imgpaths2, bbs2)
         if bestlabel == None or closestdist < mindist:
             bestlabel = label
             mindist = closestdist
             bbBest = bbOut
     return bestlabel, mindist, bbBest
Beispiel #13
0
 def closest_label(imgpath, bb, exemplars):
     bestlabel = None
     mindist = None
     bbBest = None
     img = shared.standardImread(imgpath, flatten=True)
     for label, tuples in exemplars.iteritems():
         imgpaths2, bbs2 = [], []
         for imgpath2, bb2 in tuples:
             imgpaths2.append(imgpath2)
             bbs2.append(bb2)
         closestdist, bbOut = get_closest_ncclk(
             imgpath, img, bb, imgpaths2, bbs2)
         if bestlabel is None or closestdist < mindist:
             bestlabel = label
             mindist = closestdist
             bbBest = bbOut
     return bestlabel, mindist, bbBest
Beispiel #14
0
def global_align(Iref, imgpaths):
    """ Using IREF as a reference, aligns every image in IMGPATHS to IREF.
    Input:
        IplImage IREF: An OpenCV IplImage instance, i.e. the reference
            image we will align against.
        list IMGPATHS: A list of image paths.
    Output:
        list IOUTS. [(str imgpath, nparray H, IplImage Ireg, float err), ...].
    IOUTS:
        A list of tuples containing the aligned image Ireg, along with
        the discovered transformation matrix H, alignment error ERR, and
        the path to the ballot image IMGPATH.
    """
    Iouts = []  # [(imgpath, H, Ireg, err), ...]
    for imgpath in imgpaths:
        I = shared.standardImread(imgpath, flatten=True)
        Icrop = cropout_stuff(I, 0.2, 0.2, 0.2, 0.2)
        H, Ireg, err = imagesAlign(Icrop, Iref, trfm_type='rigid', rszFac=0.25)

        Ireg = np.nan_to_num(Ireg)
        Iouts.append((imgpath, H, Ireg, err))
    return Iouts
def global_align(Iref, imgpaths):
    """ Using IREF as a reference, aligns every image in IMGPATHS to IREF.
    Input:
        IplImage IREF: An OpenCV IplImage instance, i.e. the reference
            image we will align against.
        list IMGPATHS: A list of image paths.
    Output:
        list IOUTS. [(str imgpath, nparray H, IplImage Ireg, float err), ...].
    IOUTS:
        A list of tuples containing the aligned image Ireg, along with
        the discovered transformation matrix H, alignment error ERR, and
        the path to the ballot image IMGPATH.
    """
    Iouts = [] # [(imgpath, H, Ireg, err), ...]
    for imgpath in imgpaths:
        I = shared.standardImread(imgpath, flatten=True)
        Icrop = cropout_stuff(I, 0.2, 0.2, 0.2, 0.2)
        H, Ireg, err = imagesAlign(Icrop, Iref, trfm_type='rigid', rszFac=0.25)

        Ireg = np.nan_to_num(Ireg)
        Iouts.append((imgpath, H, Ireg, err))
    return Iouts
Beispiel #16
0
def temp_match(I, bb, imList, bbSearch=None, bbSearches=None, rszFac=0.75,
               padSearch=0.75, padPatch=0.0):
    bb = list(bb)
    if bbSearch != None:
        bbSearch = list(bbSearch)
    if bbSearches != None:
        bbSearches = list(bbSearches)
    matchList = [] # (filename, left,right,up,down)

    I = np.round(shared.fastResize(I,rszFac)*255.)/255;

    bb[0] = bb[0]*rszFac
    bb[1] = bb[1]*rszFac
    bb[2] = bb[2]*rszFac
    bb[3] = bb[3]*rszFac
    [bbOut,bbOff]=shared.expand(bb[0],bb[1],bb[2],bb[3],I.shape[0],I.shape[1],padPatch)
    patchFoo = I[bbOut[0]:bbOut[1],bbOut[2]:bbOut[3]]

    patch = patchFoo[bbOff[0]:bbOff[1],bbOff[2]:bbOff[3]]

    if bbSearch != None:
        bbSearch[0] = bbSearch[0]*rszFac
        bbSearch[1] = bbSearch[1]*rszFac
        bbSearch[2] = bbSearch[2]*rszFac
        bbSearch[3] = bbSearch[3]*rszFac

    for cur_i, imP in enumerate(imList):
        if bbSearches != None:
            bbSearch = map(lambda c: c*rszFac, bbSearches[cur_i])
        I1 = shared.standardImread(imP,flatten=True)
        I1 = np.round(shared.fastResize(I1,rszFac)*255.)/255.
        # crop to region if specified
        if bbSearch != None:
            [bbOut1,bbOff1]=shared.expand(bbSearch[0],bbSearch[1],
                                   bbSearch[2],bbSearch[3],
                                   I1.shape[0],I1.shape[1],padSearch)
            I1=I1[bbOut1[0]:bbOut1[1],bbOut1[2]:bbOut1[3]]
        if I1.shape[0] < patch.shape[0] or I1.shape[1] < patch.shape[1]:
            w_big = max(I1.shape[0], patch.shape[0])
            h_big = max(I1.shape[1], patch.shape[1])
            I1_big = np.zeros((w_big, h_big)).astype('float32')
            I1_big[0:I1.shape[0], 0:I1.shape[1]] = I1
            I1 = I1_big

        patchCv=cv.fromarray(np.copy(patch))
        ICv=cv.fromarray(np.copy(I1))
        outCv=cv.CreateMat(abs(I1.shape[0]-patch.shape[0])+1,abs(I1.shape[1]-patch.shape[1])+1, cv.CV_32F)
        
        cv.MatchTemplate(ICv,patchCv,outCv,cv.CV_TM_CCOEFF_NORMED)
        Iout=np.asarray(outCv)
        
        Iout[Iout==1.0]=0.995; # opencv bug
        
        score1 = Iout.max() # NCC score
        YX=np.unravel_index(Iout.argmax(),Iout.shape)
        i1=YX[0]; i2=YX[0]+patch.shape[0]
        j1=YX[1]; j2=YX[1]+patch.shape[1]
        (err,diff,Ireg)=shared.lkSmallLarge(patch,I1,i1,i2,j1,j2, minArea=np.power(2, 17))
        score2 = err / diff.size # pixel reg score
        if bbSearch != None:
            matchList.append((imP,score1,score2,Ireg,
                              i1+bbOut1[0],i2+bbOut1[0],
                              j1+bbOut1[2],j2+bbOut1[2],rszFac))
        else:
            matchList.append((imP,score1,score2,Ireg,
                              i1,i2,j1,j2,rszFac))

    return matchList
def do_digit_group(b2imgs, img2b, partitions_map, partitions_invmap,
                   partition_exmpls, badballotids,
                   img2page, img2flip, attrinfo, digitexemplars_map,
                   digitpatch_outdir, voteddir_root, digpatch2imgpath_outP,
                   mode=GRP_PER_PARTITION):
    """
    Input:
        dict B2IMGS:
        dict IMG2B:
        dict PARTITIONS_MAP:
        dict PARTITIONS_INVMAP:
        dict PARTITIONS_EXMPLS:
        list BADBALLOTIDS: List of quarantined/discarded ballot ids.
        dict IMG2PAGE:
        dict IMG2FLIP: maps {str imgpath: bool isflip}
        dict ATTRINFO: [x1,y1,x2,y2,attrtype,page,numdigits,digitdist]
        dict DIGITEXEMPLARS_MAP: maps {str digitval: [[str regionP, (y1,y2,x1,x2), str digitpatch_i], ...]}
        str DIGITPATCH_OUTDIR: Root dir of extracted digit patches.
        str VOTEDDIR_ROOT: Root dir of voted ballots.
        int MODE:
    Output:
        dict DRESULTS. maps {int ID: [str digitstr, imgpath, [[str digit_i, (x1,y1,x2,y2), score_i, digpatchP_i], ...]]},
            where ID is partitionID/ballotID depending on MODE.
    """
    x1, y1, x2, y2, attrtype, page, numdigits, digitdist = attrinfo
    
    # 0.) Depending on MODE, grab the image paths to work with.
    d_imgpaths = [] # imgpaths with the digit attribute present
    flip_map = {} # maps {str imgpath: bool isflip}
    if mode == GRP_PER_PARTITION:
        for partitionID, ballotIDs in partition_exmpls.iteritems():
            imgpaths = b2imgs[ballotIDs[0]]
            imgpaths_ordered = sorted(imgpaths, key=lambda imP: img2page[imP])
            d_imgpaths.append(imgpaths_ordered[page])
            for imgpath in imgpaths_ordered:
                flip_map[imgpath] = img2flip[imgpath]
    else:
        for ballotID, imgpaths in b2imgs.iteritems():
            if ballotID in badballotids:
                continue
            imgpaths_ordered = sorted(imgpaths, key=lambda imP: img2page[imP])
            d_imgpaths.append(imgpaths_ordered[page])
        flip_map = img2flip

    # 1.) Load the digit exemplars
    digit_ex_imgs = {} # maps {(str digit, str meta): nparray digit_img}
    for digit, exemplars in digitexemplars_map.iteritems():
        for i, (regionP, bb, digitpatch) in enumerate(exemplars):
            I = shared.standardImread(digitpatch, flatten=True)
            digit_ex_imgs[(digit, i)] = I

    # 2.) Invoke digitParse
    bb = (y1, y2, x1, x2)
    rejected_hashes = {}
    accepted_hashes = {}
    # RESULTS: [(imgpath_i, ocrstr_i, imgpatches_i, patchcoords_i, scores_i), ...]
    pm_results = part_match.digitParse(digit_ex_imgs, d_imgpaths, bb, numdigits,
                                       flipmap=flip_map, rejected_hashes=rejected_hashes,
                                       accepted_hashes=accepted_hashes,
                                       hspace=digitdist)
    # 3.) Finally, munge PM_RESULTS into DRESULTS, and also extract
    #     each digit patch into proj.digitpatch_out.
    dresults = {}
    extract_jobs = [] # [[imgpath, (x1,y1,x2,y2), outpath], ...]
    digpatch2imgpath = {} # maps {str digpatchpath: (str imgpath, int idx)}

    for (imgpath, ocrstr, imgpatches, patchcoords, scores) in pm_results:
        ballotid = img2b[imgpath]
        # Recreate directory structure
        rp = os.path.relpath(os.path.abspath(imgpath), os.path.abspath(voteddir_root))

        imgname = os.path.splitext(os.path.split(imgpath)[1])[0]
        if mode == GRP_PER_PARTITION:
            id = partitions_invmap[ballotid]
        else:
            id = ballotid
        entry = []
        for i,digit in enumerate(ocrstr):
            y1, y2, x1, x2 = patchcoords[i]
            digpatchP = pathjoin(digitpatch_outdir, rp, "{0}_dig{1}_{2}.png".format(imgname, digit, i))
            entry.append([digit, (x1,y1,x2,y2), scores[i], digpatchP])
            extract_jobs.append((imgpath, (x1,y1,x2,y2), digpatchP, img2flip[imgpath]))
            digpatch2imgpath[digpatchP] = (imgpath, i)
        row = (ocrstr, imgpath, entry)
        dresults[id] = row

    pickle.dump(digpatch2imgpath, open(digpatch2imgpath_outP, 'wb'),
                pickle.HIGHEST_PROTOCOL)

    print "...Extracting DigitPatches..."
    t = time.time()
    do_extract_digitpatches(extract_jobs)
    dur = time.time() - t
    print "...Finished extracting digit patches ({0} s).".format(dur)

    return dresults
Beispiel #18
0
def temp_match(I, bb, imList, bbSearch=None, bbSearches=None, rszFac=0.75,
               padSearch=0.75, padPatch=0.0):
    bb = list(bb)
    if bbSearch is not None:
        bbSearch = list(bbSearch)
    if bbSearches is not None:
        bbSearches = list(bbSearches)
    matchList = []  # (filename, left,right,up,down)

    I = np.round(shared.fastResize(I, rszFac) * 255.) / 255

    bb[0] = bb[0] * rszFac
    bb[1] = bb[1] * rszFac
    bb[2] = bb[2] * rszFac
    bb[3] = bb[3] * rszFac
    [bbOut, bbOff] = shared.expand(bb[0], bb[1], bb[2], bb[3], I.shape[
                                   0], I.shape[1], padPatch)
    patchFoo = I[bbOut[0]:bbOut[1], bbOut[2]:bbOut[3]]

    patch = patchFoo[bbOff[0]:bbOff[1], bbOff[2]:bbOff[3]]

    if bbSearch is not None:
        bbSearch[0] = bbSearch[0] * rszFac
        bbSearch[1] = bbSearch[1] * rszFac
        bbSearch[2] = bbSearch[2] * rszFac
        bbSearch[3] = bbSearch[3] * rszFac

    for cur_i, imP in enumerate(imList):
        if bbSearches is not None:
            bbSearch = map(lambda c: c * rszFac, bbSearches[cur_i])
        I1 = shared.standardImread(imP, flatten=True)
        I1 = np.round(shared.fastResize(I1, rszFac) * 255.) / 255.
        # crop to region if specified
        if bbSearch is not None:
            [bbOut1, bbOff1] = shared.expand(bbSearch[0], bbSearch[1],
                                             bbSearch[2], bbSearch[3],
                                             I1.shape[0], I1.shape[1], padSearch)
            I1 = I1[bbOut1[0]:bbOut1[1], bbOut1[2]:bbOut1[3]]
        if I1.shape[0] < patch.shape[0] or I1.shape[1] < patch.shape[1]:
            w_big = max(I1.shape[0], patch.shape[0])
            h_big = max(I1.shape[1], patch.shape[1])
            I1_big = np.zeros((w_big, h_big)).astype('float32')
            I1_big[0:I1.shape[0], 0:I1.shape[1]] = I1
            I1 = I1_big

        patchCv = cv.fromarray(np.copy(patch))
        ICv = cv.fromarray(np.copy(I1))
        outCv = cv.CreateMat(abs(I1.shape[
                             0] - patch.shape[0]) + 1, abs(I1.shape[1] - patch.shape[1]) + 1, cv.CV_32F)

        cv.MatchTemplate(ICv, patchCv, outCv, cv.CV_TM_CCOEFF_NORMED)
        Iout = np.asarray(outCv)

        Iout[Iout == 1.0] = 0.995  # opencv bug

        score1 = Iout.max()  # NCC score
        YX = np.unravel_index(Iout.argmax(), Iout.shape)
        i1 = YX[0]
        i2 = YX[0] + patch.shape[0]
        j1 = YX[1]
        j2 = YX[1] + patch.shape[1]
        (err, diff, Ireg) = shared.lkSmallLarge(
            patch, I1, i1, i2, j1, j2, minArea=np.power(2, 17))
        score2 = err / diff.size  # pixel reg score
        if bbSearch is not None:
            matchList.append((imP, score1, score2, Ireg,
                              i1 + bbOut1[0], i2 + bbOut1[0],
                              j1 + bbOut1[2], j2 + bbOut1[2], rszFac))
        else:
            matchList.append((imP, score1, score2, Ireg,
                              i1, i2, j1, j2, rszFac))

    return matchList
Beispiel #19
0
def cluster_imgpatchesV2(imgpaths, bb_map, init_clusters=None, THRESHOLD=0.95):
    """ Given a list of imgpaths, and bounding boxes for each image,
    cluster the bounding boxes from each image.
    Input:
        list imgpaths:
        dict bb_map: maps {str imgpath: (y1,y2,x1,x2)}
        list init_clusters: An initial set of cluster centers, of the form:
            {imgpath_i: (imgpath_i, bb_i)}
        float THRESHOLD: A cutoff value to use when determining if the patch
            was found. Ranges from [0.0, 1.0], where higher values is 'stricter',
            i.e. THRESHOLD=1.0 means only accept exact matches (not recommended).
            Higher values also means more computation time.
    Output:
        A dict of the form:
            {c_imgpath: [(imgpath_i, bb_i, score), ...}
        where each c_imgpath is the 'center' of a given cluster C.
    """
    clusters = {}
    unlabeled_imgpaths = list(imgpaths)
    while unlabeled_imgpaths:
        curimgpath = unlabeled_imgpaths.pop()
        bb = bb_map[curimgpath]
        I = shared.standardImread(curimgpath, flatten=True)
        _t = time.time()
        print "...calling find_patch_matchesV1..."
        matches = partask.do_partask(findpatchmatches,
                                     unlabeled_imgpaths,
                                     _args=(I, bb, bb, THRESHOLD))
        print "...finished find_patch_matchesV1 ({0} s)".format(time.time() -
                                                                _t)
        # Manually add in I
        matches.append(
            (curimgpath, -1.0, 1.0, None, bb[0], bb[1], bb[2], bb[3], 1.0))
        if matches:
            # 0.) Retrieve best matches from matches (may have multiple
            # matches for the same imagepath)
            print "...number of pre-filtered matches: {0}".format(len(matches))
            bestmatches = {
            }  # maps {imgpath: (imgpath,sc1,sc2,Ireg,y1,y2,x1,x2,rszFac)}
            for (filename, sc1, sc2, Ireg, y1, y2, x1, x2, rszFac) in matches:
                y1, y2, x1, x2 = map(lambda c: int(round(c / rszFac)),
                                     (y1, y2, x1, x2))
                if filename not in bestmatches:
                    bestmatches[filename] = (filename, sc1, sc2, y1, y2, x1,
                                             x2, rszFac)
                else:
                    old_sc2 = bestmatches[filename][2]
                    if sc2 < old_sc2:
                        bestmatches[filename] = (filename, sc1, sc2, y1, y2,
                                                 x1, x2, rszFac)
            print "...found {0} matches".format(len(bestmatches))
            # 1.) Handle the best matches
            for _, (filename, sc1, sc2, y1, y2, x1, x2,
                    rszFac) in bestmatches.iteritems():
                if filename in unlabeled_imgpaths:
                    unlabeled_imgpaths.remove(filename)
                clusters.setdefault(curimgpath, []).append(
                    (filename, (y1, y2, x1, x2), sc2))
        else:
            print "...Uh oh, no matches found. This shouldnt' have \
happened."

            pdb.set_trace()
    print "...Completed clustering. Found {0} clusters.".format(len(clusters))
    return clusters