Beispiel #1
0
    def test_b_sign(self):
        """
        We generate a random IQU map with geometry such that cdelt[0]<0
        We transform this to TEB with map2harm and map2alm followed by 
        scalar harm2map and alm2map and use these as reference T,E,B maps.
        We flip the original map along the RA direction.
        We transform this to TEB with map2harm and map2alm followed by 
        scalar harm2map and alm2map and use these as comparison T,E,B maps.
        We compare these maps.
        """
        ells,cltt,clee,clbb,clte = np.loadtxt(DATA_PREFIX+"cosmo2017_10K_acc3_lensedCls.dat",unpack=True)
        ps_cmb = np.zeros((3,3,ells.size))
        ps_cmb[0,0] = cltt
        ps_cmb[1,1] = clee
        ps_cmb[2,2] = clbb
        ps_cmb[1,0] = clte
        ps_cmb[0,1] = clte
        np.random.seed(100)

        # Curved-sky is fine
        lmax = 1000
        alm = curvedsky.rand_alm_healpy(ps_cmb,lmax=lmax)
        shape,iwcs = enmap.fullsky_geometry(res=np.deg2rad(10./60.))
        wcs = enmap.empty(shape,iwcs)[...,::-1].wcs
        shape = (3,) + shape
        imap = curvedsky.alm2map(alm,enmap.empty(shape,wcs))
        oalm = curvedsky.map2alm(imap.copy(),lmax=lmax)
        rmap = curvedsky.alm2map(oalm,enmap.empty(shape,wcs),spin=0)

        imap2 = imap.copy()[...,::-1]
        oalm = curvedsky.map2alm(imap2.copy(),lmax=lmax)
        rmap2 = curvedsky.alm2map(oalm,enmap.empty(shape,wcs),spin=0)

        assert np.all(np.isclose(rmap[0],rmap2[0]))
        assert np.all(np.isclose(rmap[1],rmap2[1]))
        assert np.all(np.isclose(rmap[2],rmap2[2]))
        

        # Flat-sky
        px = 2.0
        N = 300
        shape,iwcs = enmap.geometry(pos=(0,0),res=np.deg2rad(px/60.),shape=(300,300))
        shape = (3,) + shape
        a = enmap.zeros(shape,iwcs)
        a = a[...,::-1]
        wcs = a.wcs

        seed = 100
        imap = enmap.rand_map(shape,wcs,ps_cmb,seed=seed)
        kmap = enmap.map2harm(imap.copy())
        rmap = enmap.harm2map(kmap,spin=0) # reference map

        imap = imap[...,::-1]
        kmap = enmap.map2harm(imap.copy())
        rmap2 = enmap.harm2map(kmap,spin=0)[...,::-1] # comparison map
        
        assert np.all(np.isclose(rmap[0],rmap2[0]))
        assert np.all(np.isclose(rmap[1],rmap2[1],atol=1e0))
        assert np.all(np.isclose(rmap[2],rmap2[2],atol=1e0))
Beispiel #2
0
def get_sim(cmb, task, expid):
    if expid == 'planck':
        nid = 1
        fwhm = pfwhm
        nlevel = pnlevel
    elif expid == 'act':
        nid = 2
        fwhm = afwhm
        nlevel = anlevel
    seed = (nid, task)
    npower = (nlevel * np.pi / 180. / 60.)**2.
    nmap = enmap.rand_map((1, ) + shape,
                          wcs,
                          np.ones(shape)[None, None] * npower,
                          seed=seed)
    return maps.filter_map(cmb, maps.gauss_beam(modlmap, fwhm)) + nmap
Beispiel #3
0
def map_generate_random_noise(numerics, cosmology, wcs):  #{{{

    # generate pixel-space noise
    noise_per_pix = cosmology['noise_rms_muk_arcmin'] / \
                    (numerics['map_pixel_size'] * 60.0 * \
                     180.0 / np.pi)
    noise_map = np.random.randn(numerics['map_height_pix'], \
                                numerics['map_width_pix']) * \
                noise_per_pix

    # generate beam-convolved CMB
    beam_sigma = cosmology['beam_fwhm_arcmin'] * \
                 np.pi / 180.0 / 60.0 / \
                 np.sqrt(8.0 * np.log(2.0))
    b_l = np.exp(-0.5 * (cosmology['cmb_ell'] * beam_sigma)**2)
    cmb_map = enmap.rand_map(noise_map.shape, wcs, \
                             cosmology['cmb_c_l'][None, None, :] * \
                             b_l[None, None, :] ** 2)
    return enmap.enmap(cmb_map + noise_map, wcs=wcs)
Beispiel #4
0
import numpy as np
import matplotlib.pyplot as plt
from pixell import enmap

# map information
shape, wcs = enmap.geometry(shape=(1024, 1024),
                            res=np.deg2rad(0.5 / 60.),
                            pos=(0, 0))

# create power spectrum information
ells = np.arange(0, 6000, 1)
ps = np.zeros(len(ells))
ps[2:] = 1 / ells[2:]**2.5  # don't want monopole/dipole

# generate a realization
imap = enmap.rand_map(shape, wcs, ps[np.newaxis, np.newaxis])
# plt.imshow(imap)

mask = enmap.ones(imap.shape, imap.wcs)

N_point_sources = 50
for i in range(N_point_sources):
    mask[np.random.randint(low=0, high=mask.shape[0]),
         np.random.randint(low=0, high=mask.shape[1])] = 0
# apodize the pixels to make fake sources
point_source_map = 1 - nw.apod_C2(mask, 0.1)

imap += point_source_map  # add our sources to the map
mask = nw.apod_C2(mask, 0.5)  # apodize the mask

# # plot our cool results
Beispiel #5
0
#mask = sints.get_act_mr3_crosslinked_mask("deep56")
#dm = sints.ACTmr3(region=mask,pickupsub=False)
# dm = sints.ACTmr3(pickupsub=False)
# imap = enmap.pad(dm.get_coadd("s14","deep56","pa1_f150",srcfree=True,ncomp=None)[0],300)
# shape,wcs = imap.shape,imap.wcs

# shape,wcs = maps.rect_geometry(width_deg=20.,px_res_arcmin=0.5)
# imap = enmap.rand_map(shape,wcs,np.ones((1,1,shape[0],shape[1])))

oshape, owcs = enmap.fullsky_geometry(res=np.deg2rad(0.5 / 60.))
Ny = oshape[-2:][0]
deg = 5
npix = deg / (0.5 / 60.)
shape, wcs = enmap.slice_geometry(
    oshape, owcs, np.s_[int(Ny // 2 - npix):int(Ny // 2 + npix), :])
imap = enmap.rand_map(shape, wcs, np.ones((1, 1, shape[0], shape[1])))

ta = tiling.TiledAnalysis(shape, wcs, comm)
ta.initialize_output("out")

for ext, ins in ta.tiles():
    emap = ext(imap)
    emap = filter_map(emap)
    ta.update_output("out", emap, ins)

outmap = ta.get_final_output("out")
# print(comm.rank)
# io.plot_img(outmap,"rank_%d" % comm.rank)
if comm.rank == 0:
    fcmap = filter_map(imap)
    io.hplot(enmap.downgrade(imap, 8))
1. Unlensed CMB
2. SZ Point sources
3. a Planck-143 like 2 split system
4. a Planck-100 like 2 split system
5. an S16 pa2 like 2 split system
6. an S16 pa3 like 2 split system with uncorrelated 90 and 150

"""

# Make the unlensed CMB realization
theory = cosmology.default_theory()
ells = np.arange(0, 8000, 1)
cltt = theory.lCl('TT', ells)
ps = cltt[None, None]
cmb = enmap.rand_map(shape, wcs, ps, seed=(0, seed))
modlmap = cmb.modlmap()
#io.plot_img(cmb,os.environ['WORK'] + '/tiling/cmbmap.png',lim=300)

# Make the SZ cluster realization
Nclusters = 800
amp_150_mean = 40
amp_150_sigma = 20
amps_150 = -np.abs(
    np.random.normal(amp_150_mean, amp_150_sigma, size=Nclusters))


def get_amps(freq):
    return amps_150 * szfg.ffunc(freq) / szfg.ffunc(150.)

Beispiel #7
0
feed_dict['tC_A_T_P_T'] = lcltt2d


# Displace the unlensed map with deflection angle
def lens_map(imap):
    lens_order = 5
    return plensing.displace_map(imap, alpha, order=lens_order)


s = stats.Stats(comm)

for task in my_tasks:
    print(rank, task)
    # Make a CMB sim
    cmb = enmap.rand_map((1, ) + shape,
                         wcs,
                         cltt2d[None, None],
                         seed=(0, task))
    cmb = lens_map(cmb[0])[None]  # do the lensing
    """
    EXERCISE: do everything up to here at a higher resolution with
    geometry ushape,uwcs, which is defined for the same patch width
    but at resolution say 0.1 arcmin pixel width instead of 0.5 arcmin.

    px = 0.1
    width = 120./60.
    oshape,owcs = maps.rect_geometry(width_deg=width,px_res_arcmin=px,proj='plain')

    Then downgrade to the original resolution defined on oshape,owcs
    (with 0.5 arcmin pixel width) using
    px = 0.5
    width = 120./60.